Musbah muftah Abedessalam*

Abstract

It has been shown in [1] that if E is a Separable Banach Space and ℓ_1 embeds in E then there exists a norm on E, $f \in E^{**}$ and $\epsilon > 0$ such that for every g in E with $||g|| < \epsilon$, f+g does not a Hahn its norm on B_{E^*} the unit ball in E^* . Of course such f+g cannot expose B_{E^*} .

In this paper we will show that if Y is any Banach Space that contains an isomorphic copy of ℓ_1 then their exists a norm ||| |||| on Y and an infinite dimensional subspace Z of Y^{**} such that if $g \in Z$, $g \neq 0$, then there is an $\epsilon > 0$ such that f + g does not expose B_{Y^*} for any f in Y with $|||f||| \leq \epsilon$. Of course B_{Y^*} here denotes the unit ball in Y^* when Y is equipped with the new norm.

Given any Banach Space E, if E admits and equivalent norm, then unless otherwise stated, we shall keep denoting by B_{E^*} the unit ball of E^* corresponding to the new dual norm on E^* .

Before proving the new Eioned result, let us fix some notations:

If E is a Banach Space and KE, then we say that a point $x \in K$ is an exposed point if there is $f \in E^*$:

^{*} Mathematics Department, El-Fateh University - Tripoli, Libya

$$f(x) > f(y) \qquad \forall y \in K, y \neq x$$

in such case we say that f exposes K at x.

Note that if $x \in K$ is an exposed point then x is necessarily and extreme point of K since if:

$$x = \frac{y+z}{2} y, z \in K, y \neq K$$

$$then: f(x) = f\frac{(y+z)}{2}$$

$$= \frac{1}{2}f(y) + \frac{1}{2}f(z)$$

$$< \frac{1}{2}f(x) + \frac{1}{2}f(x) = f(x)$$

a contrdiction.

By a face of a non-empty convex set K we mean a non-empty subset F of K such that if $x \in F$, $0 \le t \le 1$

$$x = ty + (1-t)z$$
, y , $z \in K$

then $y, z \in F$. If the set of extreme points of F and K are denoted by Ext (F), Ext (K) respectivily then it is clear that if $x \in Ext(F)$, then:

$$x \in Ext(K)$$

Lemma (1.1):

Let $(F_i)_{i\geq 1}$ be a sequence of Banach Spaces and let:

$$F = \underset{i=1}{\overset{\infty}{\oplus}} F_i = \left\{ x = (x_i) \in \prod_{i=1}^{\infty} F_i \; ; \; \|x\| = \sum_{i=1}^{\infty} \|x_i\| < \infty \right\}$$

$$F^* = \underset{i=1}{\overset{\infty}{\oplus}} F_i^* = \left\{ x^* = (x_i^*) \in \prod_{i=1}^{\infty} F_i^* \; ; \; \|x^*\| = snp_i \|x_i^*\| \right\}$$
then:

(i)
$$Ext(B_{F^*}) = \pi \infty_{i=1} Ext(B_{F_i^*})$$

(ii)
$$\overline{Ext} \left(B_{F^*} \right)^{W^*} = \pi \propto {}_{i=1} \overline{Ext} \left(B_{F_i^*} \right)^{W^*}$$

Proof:

To prove (i) we show that $x \in Ext(B_{F^*})$ iff:

$$x = (x_1, x_2, x_3, ...), x_i \in Ext(B_{F_i^*}) \forall i$$

if
$$x \notin Ext(B_{F^*})$$
, but $x = (x_1, x_2, ...)$

with $x_i \in Ext(B_{F_i^*}) \ \forall i$

then $x = \frac{y+z}{2}$

for some $y, z \in B_{F^*}, y \neq z$

hence there is at least one index i such that: $z_i \neq y_i$

with $z_i, y_i \in B_{F_i^*}$

since $B_{F^*} = \pi \infty_{i=1} B_{F_i^*}$

But this means that $x_i = \frac{y_i + z_i}{2}$ a contradiction.

Hence $x \in Ext(B_{F^*})$

Now suppose $x \in Ext(B_{F^*})$ and $x = (x_1, x_2, ...)$

with $x_i \notin Ext(B_{F_i^*})$ for some i, then there are:

$$y_i$$
, $z_i \in B^{F_i^*}$, $z_i \neq y_i$

and $x_i = \frac{y_i + z_i}{2}$

but then the elements:

$$z = (x_1, x_2, ..., x_{i-1}, z_i, x_{i+1}, ...)$$

$$y = (x_1, x_2, ..., x_{i-1}, y_i, x_{i+1}, ...)$$

are in B_{F^*} , with: $x = \frac{y+z}{2}$

a contradiction.

Hence $x_i \in Ext(B_{F_i^*}) \forall$ (2)

From (1) and (2) part (i) is proved.

To prove (ii) first we show that:

$$(B_{F^*}, W^*) = \prod_{i=1}^{\infty} (B_{F_i^*}, W^*)$$

where (B_{F^*}, W^*) is the unit ball of F^* in the W^* topology.

Suppose $u^n = (u_i^n)$ in B_{F^*} and $u^n \to u$ in (B_{F^*}, W^*) .

Hence for every $x = (x_i)$ in F we have:

$$< u^n, x > \rightarrow < u, x >$$

or:
$$\sum_{i=1}^{\infty} u_i^n (x_i) \to \sum_{i=1}^{\infty} u_i (x_i)$$

thus for $x = (0, 0, ..., x_i, 0, 0, ...)$ in F we have:

$$u_i^n(x_i) \rightarrow u_i(x_i) in(B_{F_i^*}, W^*)$$

which means that
$$u^n \to u$$
 in $\prod_{i=1}^{\infty} (B_{F_i^*}, W^*)$

Conversely, suppose that: $u_i^n \to 0$ in $(B_{F_i^*}W^*)$

for every i, we show that: $u^n \to 0$ in (B_{F^*}, W^*)

Let $x = (x_i) \in B_F$, the for every $\in > 0$, there exists a natural number N:

$$\sum_{i=N+1}^{\infty} \|x_i n\| \le \frac{\epsilon}{2}$$

Now
$$|\sum_{i=1}^{\infty} u_i^n(x_i)|| \le \sum_{i=1}^{N} |u_i^n(x_i)| + \sum_{i=N+1}^{\infty} |u_i^n(x_i)|$$

$$\leq \sum_{i=1}^{N} |u_i^n(x_i)| + \sum_{i=N+1}^{\infty} ||u_i^n|| ||x_i||$$

$$\leq \sum_{i=1}^{N} |u_i^n(x_i)| + \sum_{i=N+1}^{\infty} ||x_i||$$

$$\leq \sum_{i=1}^{N} |u_i^n(x_i) + \frac{\epsilon}{2}$$

by the fact that $u_i^n \to 0$ in $B(F_i^*, W^*), \forall i$

hence for each i = 1, 2, 3, ..., N there is γ_i :

$$|u_i^n(x_i)| < \frac{\epsilon}{2N} \text{ for } n \geq \gamma_i$$

if we let $\gamma \geq \gamma_i$ for i = 1, 2, ..., N, then for $n > \gamma$ we have:

$$\sum_{i=1}^{N} |u_i^n(x_i)| \leq \sum_{i=1}^{N} \frac{\epsilon}{2N}$$

$$\leq \frac{\epsilon}{2}$$

or simply $u^n \to 0$ in (B_{F^*}, W^*)

Henece by [6] we now have: $\pi_{i=1}^{\infty} \overline{Ext} \left(B_{F_i^*}\right)^{W^*} = \overline{Ext} \left(B_{F^*}\right)^{W^*}$

Theorem 1.2 [2]

There exits an equivalent norm on ℓ_1 such that if E denotes ℓ^1 with new norm, then we have:

$$\overline{Span}\Big(\overline{Ext}(B_{E^*})^{W^*}\Big) \neq E^*$$

Lemma (1.3):

There exists an equivalent norm on ℓ_1 such that if E denotes ℓ^1 equipped with the new norm, then:

$$\frac{E^*}{Span}\left(\overline{Ext}\left(B_{E^*}\right)^{W^*}\right)$$

is infinite dimensional.

Proof:

Write $\mathbb{N} = \bigcup_{i=1}^{\infty} N_i$, N_i infinite and

$$N_j \cap N_i = \phi, i \neq j$$

then:
$$\ell_i(N) = \bigoplus_{i=1}^{\infty} \ell_1(N_i)$$

on each ℓ_1 (N_i) we put the norm $\| \|_i$ given, in theorem 1.2, and put on ℓ_1 (N) the norm:

$$|||x||| = \sum_{i=1}^{\infty} ||x_i||_i$$

By theorem 1.2 and the Hahn-Banach theorem choose: $\frac{\phi_i \in \ell_1^{**}(N_i)}{\{0\}}$

so that:
$$\phi_i = 0$$
 on $Ext \ \overline{(B_{\ell_1^*}(N_i))}^{W^*}$

Notice we many consider ϕ_i in $\ell_1^{**}(N)$ by taking:

$$\phi_i = 0 \text{ on } \ell_1 (N_j) \ \forall \ j \neq i$$

For each i define $\delta_i: \ell_1(\mathbb{N}) \to \ell_1(\mathbb{N})$ by:

$$\delta_i ((\alpha_{ik})_{k>1}) = (\beta_i)$$

where: $\beta_i = 0$ if $i \not\in N_i$ and $\beta_i = \alpha_i$ when $i = i_k$ in N_i

Let:
$$\psi = \delta_i^{**}(\phi_i)$$

It is easily checked that: $\psi_i = 0$ on $\overline{Ext(B_{\ell_1}^*)}^{W^*}$

and on ℓ_1^* (N_i) whenever $i \neq j$. thus $(\psi_i)_{i \geq 1}$ are linearly independent, since if:

$$\sum_{k} \alpha_{k} \psi_{k} = 0$$

with $\alpha_k \neq 0$ for some k, let $u \in \ell_1^* (N_k)$ so that:

$$\psi_k(u) = 1$$

then
$$<\sum_k \alpha_k \psi_k$$
, $u>=\alpha_k=0$

a contradiction.

Now set
$$Y = \overline{Span} \Big(\overline{Ext(B_{\ell_1^*(N)})}^{W^*} \Big)$$

then $Y \perp$ is an infinite dimensional since:

$$(\psi_i)_{i>i}Y$$
 \perp

But
$$Y \perp = \left(\frac{E^*}{Y}\right)^*$$

hence $\frac{E^*}{V}$ must be inifinite dimensional.

Theorem 1.4 [4]

Le E be a locally convex Haudroff topological space and K be a non-empty compact convex subset of E, then k has an extreme point, and

$$K = \overline{Conv}(Ext\ (K))$$

Theorem 1.5

If X is a closed subspace of a Banach Space (Y, || ||), and suppose X has a norm P equivalent to its norm inherited from Y, then there exists an equivalent norm || || on Y so that:

$$|||x||| = P (x) \forall x \in X$$

Proof:

Let
$$D = \{x \in X : P(x) \le 1\}$$

we may assume that $(B_X, || ||)D\gamma B_Y$ for some $\gamma > 1$. Set $C = D^{\circ} \cap B_{Y^{*}}$ where D° denotes the polar set of D.

Then $\frac{1}{\gamma}B_{Y^*}CB_{Y^*}$, and hence the gauge function q_C of C defines an equivalent norm ||| ||| on Y^* [3]. Thus for any $y \in Y$ we have:

$$|||y||| = Swp_C | < y^*, y > |$$

we show if $x \in X$, then |||x||| = P(x). If x = 0, we are done. Suppose $x \neq 0$, set

$$u = \frac{x}{P(x)}$$

it suffices to show that |||u||| = 1.

Note that $u \in D$ since P(u) = 1, so if $y^* \subset D^\circ$.

then $|y^*(u)| \leq 1$ or simply $|||u||| \leq t$. Now suppose that $|||u||| = \alpha < \beta < 1$, then for every $y^* \in C$ we have:

$$y^*(u) < \beta < 1 (**)$$

Let M denote the unit ball of X^* , when X equipped with the norm P, then.

$$P\left(u\right) = Sup_{M} \left|x^{*}\left(u\right)\right|$$

Also, since X is equipped with the norm P, M in W^* , compact mX^* , then there exists x_0^* in M such that $P(u) = |x_0^*(u)|$, since $x_0^* \in M$, we have $x_0^* (d) \leq 1 \ \forall \ d \in D$. Hence x_0^* belongs to the unit ball of X^* corresponding to the norm inherited from the norm of Y, this of course follows from (**). Thus, there exists $y^* \in Y^*$ such that:

$$y^*|_X = x_0^* \text{ and } ||y^*|| = ||x_0^*|| \le 1$$

If $d \in D$, then d must be in X, so:

 $|y^*\left(d
ight)|=|x_0^*\left(d
ight)|\ \le\ 1,$ which implies that y^* $\in\ D^\circ\ \cap\ B_{Y^*}.$ Hence it follows that y^* $(u) \leq \beta < 1$ but $|y^*(u)| = |x_0^*(u)| = 1$, a contradiction, hence |||u||| = 1 or $P(x) = |||x||| \forall x \in X$.

Lemma 1.6

If X is a closed subspace of a Banach Space $(Y, \| \|)$ and suppose X has a norm P equivalent to its norm iherited from Y, the there exists a norm on Y such that if $Q: X \to Y$ is the natural embedding,

$$Q^* \left(\overline{Ext} \left(B_{Y^*} \right)^{W^*} \right) = \overline{Ext} \left(B_{X^*} \right)^{W^*}$$

Proof:

Let $Q: X \to Y$ denote the natural embedding of X into Y. By theorem 1.5 there exists an equivalent norm || || or Y such that:

$$|||x||| = P(x) \ \forall \ x \in X$$

Let $Q^*: (Y^*, ||| |||) \rightarrow (X^*, ||| |||)$ be the adjoint mapping, it is then clear that:

$$|||Q^*||| = 1$$

Set $K = \overline{Ext(B_{X^*})}^{W^*}$ and let $K' = Q^{*^{-1}}(K) \cap B_{Y^*}$ now if $X \perp$ is the annihilator X^* in $(Y^*, ||| |||)$, let L be the unit ball of $X \perp$ with respect to the dual norm ||| |||. The the set $K'' = K' \oplus 2L$ is W^* compact and hence if we set $C = \overline{Conv}^{W^*}(K'')$, we first show that $B_{Y^*}C$:

Let $y^* \in B_{V^*}$, if $Q^*(y^*) \in K$ we are done, since $y^* \in Q^{*-1}(C)$ and hence $y^* \in K'K''C$, if not, then first notice that $Q^*(y^*)B_{X^*}$, then by theorem 1.4:

$$B_{X^*} = \overline{Conv} \left(Ext \left(B_{X^*} \right)^{W^*} \right)$$
 then we must have: $Q^* \left(y^* \right) = W^* -_{\alpha} \left(\sum_{i=1}^{J\alpha} \lambda_{i, \, \alpha} x_{i, \, \alpha}^* \right)$

where $x_{i,\alpha}^* \in Ext(B_{Y^*})$. Now for each α there exists $y_i^* \in B_{Y^*}$ such that. $Q^*\left(y_{i,\,\alpha}^*\right)=x_{i,\,\alpha}^*$ observe that $x_{i,\,\alpha}^*\in K$ implies that $y_{i, \alpha}^{*} \in \mathit{K}'$ and hence we see that the net:

 $u_{\alpha} = \sum_{i=1}^{n} \lambda_{i, \alpha} y_{i, \alpha}^*$ is in $\overline{Conv}^{W^*}(K')$, this set being W^* - compact forces (u_{α}) to have a subset (u_{β}) such that $u_{\beta} \to u$, $u \in \overline{Conv}^{W^*}(K')$.

Now observe that:

$$Q^{*}(y^{*}) = W^{*} -_{\beta} \left(\sum_{i=1}^{J_{\beta}} \lambda_{i, \beta} x_{i, \beta}^{*} \right)$$

$$i.e \ Q^{*}(y^{*}) = W^{*} -_{\beta} \sum_{i=1}^{J_{\beta}} \lambda_{i, \beta} Q^{*}(y_{i, \beta}^{*})$$

$$= W^{*} -_{\beta} Q^{*} \left(\sum_{i=1}^{J_{\beta}} \lambda_{i, \beta} y_{i, \beta}^{*} \right)$$

$$= W^{*} -_{\beta} Q^{*}(u_{\beta})$$

$$= Q^{*}(u)$$

which means that $Q^*(y^*-u)=0$ and hence $y^*-u\in X\perp$, but notice that $|||y^* - u||| \le 2$, thus $y^* - u \in 2L$. Consequently

$$y^* \in \overline{Conv}^{W^*}(K') + 2L$$

but: $\overline{Conv}^{W^*}(K') \oplus 2L\overline{Conv}^{W^*}(K' \oplus 2L)C$, which implies that $y^* \in C$ or $B_{Y^*}C$. This and [3] shows that the guage function q_C of defines an equivalent dual norm on Y*. Now we show this is the needed norm to do the Job:

First by [2] not that Ext(C)K''

and hence
$$\overline{Ext}(C)^{W^*}K''$$
, there for: $Q^*(\overline{Ext}(C)^{W^*})Q^*(K'')$, but $Q^*\equiv 0$ on L so $Q^*x\overline{Ext}(C)^{W^*})Q^*(K')=Q^*(Q^{*-1}(K)\cap B_{Y^*})K$

In particular this shows that:

$$Q^* (C)\overline{Conv(K)}^{W^*} = B_{X^*}$$

To finish the proof, we show that: $KQ^* (\overline{Ext(C)}^{W^*})$

Let $u \in K = \overline{Ext(B_{X^*})}^{W^*}$, then there exists a set (u_{α}) in Ext (B_{X^*}) such that $u = W^* -_{\alpha} u_{\alpha}$. Let $F_{\alpha} = Q^{*-1}(u_{\alpha}) \cap C$, since $B_{Y^*}C$, then

$$\phi \neq B_{Y^*} \cap Q^{*-1}(u_\alpha)F_\alpha \ i.e. \ F_\alpha \neq \phi, \ W^*$$

closed convex subset of C. In fact F_{α} is a face of C: F_{α} being W^* - compact and convex it contains an extreme point, and since F_{α} is a face, such an extreme of F_{α} must be an extreme point of C. Hence there exists $y_{\alpha}^* \in Ext(C)$ such that $Q^*(y_2^*) = u$ alpha. Since C is W^* - compact, the set (y_{α}^*) has a convergent subset. (y_{β}^*) such that $y_{\beta}^* \to y^*$, but Q^* is $weak^*$ to $weak^*$ continuous implies that:

$$u =_{\beta} Q^* (y_{\beta}^*) = Q^* (_{\beta} y_{\beta}^*) = Q^* (y^*)$$
 so $u \in Q^* (\overline{Ext(C)}^{W^*})$ or simply:
$$KQ^* x \overline{Ext(C)}^{W^*}), \text{ and hence we have shown that:}$$

$$\overline{Ext(B_{X^*})}^{W^*} = Q^* (\overline{Ext(C)}^{W^*})$$

where C is the unit ball of Y^* when equipped with the dual norm q_C .

Theorem 1.7

If Y is a Banach Space containing an isomorphic copy of ℓ_1 , the there exists a norm on Y such that

$$\frac{Y^*}{\overline{Span}\{\overline{Ext}\;(B_{Y^*})^{W^*}\}}$$
 is infinite dimensional **Proof:**

Let $T: \ell_1 \to Y$ be on isomorphic embedding of ℓ_1 into Y. Now put on ℓ_1 the norm || || || defined in Lemma 1.3, set $X = T(\ell_1)$, and for each x = T, z) in X let P(x) = |||z|||, note that T is map from ℓ_1 on to X. It is clear that P define a norm of the closed subspace X of Y that is equivalent to norm inherited from Y. Hence by Lemma 1.6 there exists a norm on Y such that if $Q: X \to Y$ denotes the natural embedding then:

$$Q^* \left(\overline{Ext} \left(B_{Y^*} \right)^{W^*} \right) = \overline{Ext} \left(B_{X^*} \right)^{W^*}$$

Now by lemma 1.3 we know there exists a sequence $(\psi_i)_{i>1}$ of linearly independent elements in $(\ell_1, ||| |||)^*$ such that for each $i \geq 1 \psi_i^* \equiv 0 \text{ on } \overline{Ext(B_{\ell_i^*})}^{W^*}$

For each $i \geq 1$ let $g_i = Q^{**}(T^{**}(\psi_i))$, hence $g_i \equiv 0$ on $\overline{Span}(\overline{Ext\ (B_{Y^*})}^{W^*})$. Furthermore the elements of the sequence $(g_i)_{i\geq 1}$ are linearly independent since the elements of $(\psi_i)_{i>1}$ are and $Q^{**}T^{**}$ is one-to-one. Let

$$z = Span \left(\overline{Ext} \left(B_{Y^*} \right)^{W^*} \right)$$

then for each $i \geq 1$ g_i is in the annihilator z^1 of z in Y^{**} . Hince $z \perp$ is an infinite dimensional subspace of Y^{**} , since $\left(\frac{Y^*}{z}\right)^* \approx z \perp$. This shows that $\frac{Y^*}{z}$ must be infinite dimensional.

Theorem 1.8

If Y is a Banach Space containing an isomorphic copy of ℓ_1 , then there exists a norm on Y and an infinite dimensional subspace z of Y^{**} such that: if $\frac{g \in z}{\{0\}}$, and $f \in Y$ satisfies $||f|| < \frac{1}{2}||g||$ then:

$$f + g$$
 does not expose B_{Y^*}

Proof:

By theorem 1.7 $W = \frac{Y^*}{\overline{Span}(\overline{Ext}(B_{Y^*})^{W^*})}$ is infinite dimensional. So if we let:

$$z = W^* \approx [Span \ x \overline{Ext} \ (B_{Y^*})^{W^*})] \perp$$

than if $g \in \frac{z}{\{0\}}$ and if $f \in Y$, with $\|f\| < \frac{1}{2}\|g\|$ but f+g exposes B_{Y^*} , then there exists $x_0^* \in Y^*$ at which f+g exposes B_{Y^*} , but x_0^* must be an extreme point of B_{Y^*} .

Hence $g(x_0^*) = 0$. Now:

$$||f+g|| = |(f+g) (x_0^*)|$$

$$= |f\left(x_0^*\right)|$$

$$= ||f||$$

on the other hand we have:

$$\|g\| \ \leq \ \|f+g\| + \|f\|$$

$$\leq 2||f||$$

or $||f|| \geq \frac{1}{2} ||g||$ a contradiction, so f + g does not expose B_{Y^*} .

References

- ABEDESSALAM, Musbah muftah, On Banach Spaces containing ℓ_1 , Libyan Jurnal of Scinces, 1988.
- BOURGIN, R., Geometric aspects of convex sets with the Radon-Nikodym property, Springer-Verlag, Lecture Notes in Mathematics, #993, Berlin, (1983).
- DE VITO, C., Functional Analysis, Acadimic-press, New York, (1978).
- 4 DIESTEL, J., Sequences and Series and Banach Spaces, Spriger-Verlag, Graduate Text Books in Mathematics, #92, New York, (1984).
- 5 NARICI, L. and BECKENSTEIN, E., Topological Vector Spaces, Marcel. Dekker, Inc., New York, (1985).
- SCHAEFER, H., Banach Lattices and Positive Operators, Springer Verlag, Berlin, (1974).

SOME MINERALS AND CONSTITUENTS CONTENT OF LOCAL Hibiscus sabdariffa SEEDS.

Afaf Theiab Al-Marzuk

Basic. Sci. sec. Coll. Agnic. Univ. Baghdad.

ABSTRACT

The contituents of local roselle seed (which is 20% of Igowe by weight) moisture, total ash, protein, reducing, sufars and oils were determined and found 42.50, 9.14, 21.70, 4.26, and 15.60% respectively.

The fatty acids of seed oil were identified by gas chromatography. The percentages of major fatty acids linoleic, oleic, palmitic were determined and found 44.73, 31.73 and 20.40% respectivety. The G.c. gave small amount of stearic acid (2.47%).

The minerals K, Na, Ca, P, Mg, Fe, S, Mn, Zn, and Cu were determined and found 246.92, 66.06, 53.89, 46. 53, 3.30, 6.24, 4.43, 0.45, 1.25 and 0.27 Mg/gr. respectively. The minerals Ni, Cd, Cr, and Pb were found as trace elements gave amounts less than O.L Mg/gr.