Potential protective role of β-cryptoxanthin against testicular oxidative stress induced by vinyl cyanide exposure in male rats
الكلمات المفتاحية:
سيانيد الفينيل،، بيتاكربتوزانثين،، إجهاد تأكسدي،، خصىالملخص
الدور الوقائي المحتمل للبيتاكريبتوزانثين ضد الإجهاد التأكسدي في الخصية الناجم عن التعرض لسيانيد الفينيل في ذكور الجرذان
سيانيد الفينيل هو منتج أليفاتي يستخدم على نطاق واسع في مختلف الصناعات الكيميائية الاصطناعية ومن المعروف أن سيانيد الفينيل له تأثيرات سامة على البشر وكذلك حيوانات التجارب. وقد صُممت هذه الدراسة لفحص قدرة بيتاكريبتوزانثين ، وهو أحد مضادات الأكسدة الطبيعية، على تخفيف الإجهاد التأكسدي الذي يسببه سيانيد الفينيل في الجرذان البيضاء البالغة.
وقد أجريت الدراسة على أربعين من ذكور الجرذان البيضاء البالغة، تزن 10±240 جراما، تم تقسيمها إلى أربع مجموعات 10) جرذان لكل مجموعة). وتمثل المجموعة الأولى (التي أعطيت زيت ذرة وماء مقطر) المجموعة الضابطة. وأعطيت المجموعة الثانية عن طريق الفم جرعات من مركب سيانيد الفينيل تعادل 30 مجـم/ كجم من وزن الجسم وذلك على مدار الأيام الخمسة الأخيرة من نهاية التجربة. وأعطيت المجموعة الثالثة يوميا عن طريق الفم جرعات من البيتاكربتوزانثين تعادل 40 مجم/كجم من وزن الجسم لمدة 30 يوما، أما المجموعة الرابعة فقد أعطيت البيتاكربتوزانثين وسيانيد الفينيل مثل المجموعتين الثانية و الثالثة وبالجرعات نفسها. وقد تم تشريح مجموعات الجرذان بعد أربعة وعشرين ساعة من إعطاء الجرعات الأخيرة.
وقد أظهرت النتائج أن إعطاء سيانيد الفينيل في المجموعة الثانية قد تسبب في زيادة ملحوظة في تركيز الأكسدة الفوقية للدهون مما يدل على زيادة أكسدة الدهون. إضافة إلى ذلك فقد وجد أن هناك تناقص ملحوظ إحصائيا في محتوى كل من الجلوتاثيون والجلوتاثيون ترانسفيريز في مصل الدم ونسيج الخصية، مما يدل على أن لسيانيد الفينيل القدرة على زيادة الإجهاد التأكسدي وبالتالي التأثير بشكل سلبي على الخصوبة في ذكور الجرذان البيضاء، أما بالنسبة للمجموعة الرابعة التي أعطيت البيتاكربتوزانثين قبل وفي وقت متزامن مع سيانيد الفينيل فقد حدث تحسن ذي دلالة إحصائية في مستوي هذه المعايير.
وبذلك تكون النتائج قد أوضحت أن للبيتاكربتوزانثين دور وقائي في تقليل أضرار الإجهاد التأكسدي في خصى ذكور الجرذان البيضاء الناتجة عن المعاملة بسيانيد الفينيل.
المراجع
REFERENCES:
Abdel-wahab, M.H. (2003). Testicular toxicity of dibromoacetonitrile and possible protection by tertiary butylhydroquinone. Pharmacological Res., 476: 509-615.
Ahmed, A. E., Farooqui, Y. H., Upreti, R. K. & El-shabrawy, O. (1982). Distribution and covalent interactions of [1-14C] acrylonitrile in the rat. Toxicology, 23: 159-175.
Atessahin, A., Karahan, I., Türk, G., Gür, S., Yilmaz, S. & Ceribasi, A. (2006). Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Repord. Toxicol., 21: 42-47.
Aust, S. D., Chignell, C. F., Bray, T. M., Kalyanaraman, B. & Mason, R. P. (1993). Free radical in toxicology. Toxicol. Appl. Pharmacol., 120: 168–178.
Burka, L. T., Sanchez, I. M., Ahmed, A. E. & Ghanayem, B. I. (1994). Comparative metabolism and disposition of acrylonitrile and methacrylonitrile in rats. Arch. Toxicol., 68: 611–618.
Burton, G. W. (1989). Antioxidant action of carotenoids. J. Nutr., 119:109–111.
Byrd, G. D., Fowler, K. W., Hicks, R. D., Lovette, M. E. & Borgerding, M. F. (1990). Isotope dilution gas chromatography – mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke. J. Chromatogr., 503: 359–368.
Chew, B. P. (1995). Antioxidant vitamins affect food animal immunity and health. J. Nutr., 125: 1804S-1808S.
Czeizel, A. E., Hegedus, S. & Timar, L. (1999). Congenital abnormalities and indicators of germinal mutations in the vicinity of an acrylonitrile producing factory. Mutat. Res., 427: 105–123.
El-demerdash, F. M., Yousef, M. I., Kedwany, F. S. & Baghdadi, H. H. (2004). Cadmium-induced changes in lipid peroxidation, blood haematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food. Chem. Toxicol., 42: 1563-1571.
El-missiry, M. A. & Shalaby, F. (2000). Role of beta-carotene in ameliorating the cadmium-induced oxidative stress in rat brain and testis. J. Biochem. Mol. Toxicol., 14: 238-243.
Esmat, A., El-demerdash, E., El-mesallamy, H. & Abdel-naim, A. B. (2007). Toxicity and oxidative stress of acrylonitrile in rat primary glial cells: preventive effects of N-acetylcysteine. Toxicol. Lett., 171: 111-118.
Fennell, T. R., Kedderis, G. L. & Sumner, S. C. (1991). Urinary metabolites of (1, 2, 3-13C) acrylonitrile in rats and mice detected by 13C nuclear magnetic resonance spectroscopy. Chem. Res. Toxicol., 4: 678–687.
Habig, W. H., Pabst, M. J. & Jakoby, W. B. (1974). Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249: 7130-7139.
Hanukoglu, I. (2006). Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev., 38: 171-196.
Hodnick, W. F., Duval, D. L. & Pardini, R. S. (1994). Inhibition of mitochondrial respiration and cyanide stimulated generation of reactive oxygen species by selected flavonoids. Biochem. Pharmacol., 47: 573–580.
(IARC) international agency for research on cancer: Acrylonitrile, acrylic and modacrylic fibers and acrylonitrrile-butadiene-styrene and styrene-acrylonitrile copolymers, in: IARC Monographs on the Evaluation of Carciogenic risk of Chemicals to Humans, Lyon 19 (1979), 73–113.
Jiang, J., Xu, Y. & Klaunig, J. E. (1998). Induction of oxidative stress in rat brain by acrylonitrile (ACN). Toxicol. Sci., 46 (2): 333–341.
Kamendulis, L. M., Jiang, J., Xu, Y. & Klaunig, J. E. (1999). Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile. Carcinogenesis, 20(8): 1555–1560.
kedderis, G. L., Batra, R. & Turner, M. J. JR. (1995). Conjugation of acrylonitrile and 2-cyanoethylene oxide with hepatic glutathione. Toxicol. Appl. Pharmacol., 135(1): 9-17.
Kessler, L., Pinget, M., Aprahamian, M., Poinsot, D., Keipes, M. & Damgé, C. (1992). Diffusion properties of an artificial membrane used for Langerhans islets encapsulation: interest of an in vitro test. Transplant Proc., 24: 953–954.
Krinsky, N. I. (1998).The antioxidant and biological properties of the carotenoids. Ann. N.Y. Acad. Sci., 20: 443–447.
Mashino, T. & Fridovich, I. (1987). Mechanism of the cyanide-catalysed oxidation of- alpha-ketoaldehydes and alpha-ketoalcohols. Arch Biochem. Biophys., 252(1): 163–170.
Mihara, M. & Uchiyama, M. (1978). Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 86 (1): 271-278.
O’Neill, M. E. & Thurnham, D. I. (1998). Intestinal absorption of beta-carotene, lycopene and luten in man and women following a standard meal: response curves in the triacylglyceral-rich lipoprotein fraction. Br. J. Nutr., 79: 149-159.
Parker, S. & Braden, M. (1990). Soft prosthesis materials based on powdered elastomers. Biomaterials, 11: 482–490.
Pilon, D., Roberts, A. E. & Rickert, D. E. (1988). Effect of glutathione depletion on the uptake of acrylonitrile vapors and on its irreversible association with tissue macromolecules. Toxicol. Appl. Pharmacol., 95: 256–278.
Rashba-step, J., Turro, N. J. & Cederbaum, A. I. (1993). Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radicals by microsomes after chronic ethanol treatment. Arch. Biochem. Biophys., 300: 401– 408.
Sadir, S., Deveci, S., Korkmaz, A. & Oter, S. (2007). Alpha-tocopherol, beta-carotene and melatonin administration protects cyclophosphamide-induced oxidative damage to bladder tissue in rats. Cell Biochem. Funct., 25: 521-526.
Saillenfait, A. M. & Sabate, J. P. (2000). Comparative developmental toxicities of aliphatic nitriles: in vivo and in vitro observations. Toxicol. Appl. Pharmacol., 163: 149–163.
Sedlak, J. & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulphydryl groups in tissues with Ellman,s reagent. Anal. Biochem., 251: 192 – 205.
Silva, C. R., Antunes, L. M. & Bianchi, M. L. (2001). Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats. Pharmacol. Res., 436: 561-566.
Sumner, S. C., Fennell, T. R., Moore, T. A., Chanas, B., Gonzalez, F. & Ghanayem, B. I. (1999). Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem. Res. Toxicol., 12: 1110–1116.
Takano, R., Murayama, N., Horiuchi, K., Kitajima, M., Kumamoto, M., Shono, F. & Yamazaki, H. (2010). Blood concentrations of acrylonitrile in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling. Regul. Toxicol. Pharmacol., 58: 252-258.
Their, R., Lewalter, J. & Bolt, H. M. (2000). Species differences in acrylonitrile metabolism and toxicity between experimental animals and humans based on observations in human accidental poisonings. Arch. Toxicol., 74: 184–189.
Ward, R. A., Schaefer, R. M., Falkenhagen, D., Joshua, M. S., Heidland, A., Klinkmann, H. & Gurland, H. J. (1993). Biocompatibility of a new high-permeability modified cellulose membrane for haemodialysis. Nephrol. Dial. Transplant., 8: 47–53.
Wu, W. K., Su, J. & Huang, M. Y. (1995). An Epidemiological study on reproductive effects in female workers exposed to acrylonitrile. Zhonghua. Yu. Fang. Yi. Xue. Za. Zhi., 29(2): 83-85.
Oxidative stress; Testes.