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Abstract
In this paper, we introduce and study the classes Z5(k.a f) and XC (k. a.f) of
meromorphic univalent functions in U ={z € C: 0 < |z| = 1} and investiage distortion
theorems, convex linear combinations and integral transforms of functions belonging to these

classes.
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Introduction.

Let ) denote the class of meromorphic functions of the form:

oo

F@ =2+ a2 (@,20 (1)

n=1

which are analytic and univalent in the punctured unitdisc U ={z € C: 0 < |z| < 1} =
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Uy {0}. A function f(x) € X is said to be meromorphically starlike of order (0 < a < 1 if
and only if

ZH0) I
—Re{f(:) } a; (zeU) (1.2)

and the class of such functions is denoted by X" (c) A function f{x) € ¥ issaid to be

meromorphically convex of order «(0 < a = 1) ifand only if

SO o
_Re{l— ) } a; (zeU) (1.3)

and the class of such functions is denoted by ... () The classes %" (a) and 2. (e}, were
introduced and studied by Pommerenke [9], Miller [7], Mogra et al. [8], Cho [3], Cho et al.
[4], and Aouf ([1] and [2]).

For a function f(z) defined by (1.1) let

1°F(2) = f(2)
P'f(2)=zf'(2) +:2
Pf(z) ==2(1'f(2) +2

andfork e M =1{123, ..}

5 () = 2(174 () +

-
) Py =

oo

l 1 »
=j—z n a,z".

n=1
The operator I* was introduced by Frasin and Darus [6].
With the help of the differential operator 7*, we define the classes 2 5" (k,«, £) and
X C(k,a ) asfollows:
Denote by X 5°(k.a, 8) the class of functions f(z) of the form (1.1) which satisfy
(1 f(2)' |
I f(z)
=FE)
I* f(z)

1

<Bf0=a<1,0<f<1),keEN,=NU{0LzeU. (14)
a—1
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Let X C"(k.a. ) bethe class of functions f(z) of the form for which
zf'(z) e L5*(k,a, B)

We note that for different choices of &, e, 5 we obtain many classes studied earlier (see [5,
with a, = 1]and [ 8]).

To prove our main result in this paper, we need the following lemmas given by El-Ashwah
and Aouf [5,with a; = 1].

Lemma 1. The function f(z) € X5"(k.a ) ifand only if

=]

D wa+Bn+ 2a-1)la, < 2801 - ) (15)
Lemma 2. The function f(z) € Z C(k,a, £) if and only if

D A+ P+ (2a - 1fla, < 28(1-a) (1.6)
n=1

Remarkl. (i) Putting & =0 in Lemma 1, we obtain the result obtained by Mogra et al. [8,
Thoerem 1].
(ii) Putting & = 0 in Lemma 2, we obtain the result obtained by Mogra et al. [8, Thoerem 2].

Distortion theorems.

Theorem 1. Let the function f(z) € £ 5*(k,a 5) . Thenfor [z| =+ < 1 we have
1 BA-@) 1 pU-a)
T 1+ af Thlf(_jll?" 1+ aff ’ (1.2)

The result is sharp for the function f(z) given by

.1 Bfl-a)_
f(—)—_j—w—

Proof. Suppose f(z) isintheclass X 5"(k.a, £). Inview of Lemmal, we have

oo

2(1+af) <) wF[(1+Mn+(2a - 1)fla, < 26(1-a)

n=1

at z =ir,r. (2.2)
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that is, that
_B(1—a)
i, = L ~ap (2.3)
Thus for 0 < |z| =+ < 1, from (1.1) and (2.3) we have
- — l N =T - l N H _,.rl N _J_,l JSE]‘_ :I
F&I= Z Zﬂ"_ =z Zﬂ g =7 Zﬂ =7 1+af (24)
n=1 =1 n=1
and
) 1 = 1 = 1 B[l—ﬂ)
|f(—j|EE_Zlﬂ"E;_TZIHH E; l—ﬂ,lg (25)

It can easily seen that the function f,(z) defined by (2.2) is the extrenal for the theorem.

Theorem 2. Let the function f(z) € L 5*(k,a, ) . Then for |z| =+ = 1, we have
1 fl-aw) 1 B(l-a)
P asap SV WIEET (2€)

Sharpness holds for function f(z) given by (2.2).
Proof. From Lemmal. and (2.3), we have

N B(1-a)
zﬂﬂ“b L~ ap (2.7)

n=1

Since the remaining part of the proof is similar to the proof of Theorem 1, we omit the

details.

Theorem 3. Let f(z) € X5 (k. @ ), then f(=z) is meromorphically convex
1

]}E (n €N). (2.8)

= inf {ﬂk—‘l(l—ﬁ)[(l—ﬁ’)ﬂ_ (2a—1)F+1
n 28n(l—a)(n+2-0)
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Sharpness holds for
26(1—a) .
n*[(1+Fn+ (2a —1)B]

ﬁ«_(:)=_%— (n=1). (2.9)

Proof. It is sufficient to show for f(z) € X 5~ (k, &, £), that

.3_,'-. I I:__g'_'-

+ z‘ <1-34, |zl < r(ka.B.8),

f |~__3-.|

where (k. a, 5, d) isthe largest value of r for which the inequality (2.8 ) holds true.
For f(z) of the form (1.1), we have

zf'"(z) 5| < Zoogn(n+ ljﬂ_,,_?"”_i
f) 7T 1 -Zginaril
Thus
zf"(z) ) i
—— +2| =1 -4zl =06 <=1
fiz)
if and only if
[== s _2_ .

n=1

But, by Lemmal , (2.10) will be true if

[ﬂ[ﬂ—z—ﬁjJ - _fﬂk[(l—ﬁjﬂ—[gﬂ—l]ﬁ—l]
1-¢ /) = 28(1— a)

that is, if

LAY

T

1 -8)(1+n+2a-1)F+ 1 "1T1 ’
{ 2Bn(l—a)(n+2—f) } (n € M). (2.11)

Theorem follows easily from (2.11).
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Convex linear combinations.

In this section we shall prove that the classes X 5 (k. a, £) and X C"(k,a, ) are closed
under convex linear combinations.
Theorem 4. Let

1
folz)=— (3.1)
and £, (z)(n = 1) begivenby (2.9). Then f(z) e ZS"(k,a B) ifandonly ifitcan be
expressed in the form

o =]

flz) = Z N, f.(z) wheren, = 0 and Z M, = L. (3.2)

n=0

Proof. Assume that

o =)

flz) = Z N, f.(z) with n, = 0and Z 1, = L.
n=0

n=0

== oo

HOEDWNAGESSIOEDWNAC

B = 1 < 1 26(1—a)
1% 26(1—a)
BE ;nk[u—mn—(za—lm]*"’”"
Then it follows that
in*[u—mn—(m—lmh ) 28(1—a)
26(1-a) * W [(1+ B+ (2a— DA
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n=1

So, by Lemmal, f(z) € X 5"(k, a, f).
Conversely, suppose f(z) € Z5 (k. a, ), then

_ 268(1— a) L
% S A Pn s (za— g (v

[,

setting

[+ Bnt (2a-1B)
e = 2B8(1—a) a,, , T

it follows that

= 1,2_.3_. " ﬂﬂd T;rc. =1 _Z T;r_,,!_,

n=1

f(2) =imﬁ~_(:)-

This completes the proof of Theorem4.
Theorem 5. Let f,(z) given by (3.1) and f,,(z) be given by

NES 26(1-a) e
£2(2) z n*P(1+F)n+ (2a—1)B] (nz1). (3:3)

Then f(z) € XC*(k a £) if and only if it can be expressed in the form (3.2).
Theorem 6. The class X S (k. a, £} is closed under convex linear combination.

Proof. Suppose that

oo

RO =2+ a2 (e, 205 =1.23,.) (34)

n=1
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areinthe class f(z) € X5 (k, o, £). Let

flz)=(1-95flz)+sf(z), 0=s=1
Then

=)

FE =2+ [ Dan, +sa,.]e"

n=1

In view of Lemmal, we have

D wa+Bn+ @a=- 1R - Day; +sa,.]

=(1-9) ) WA+An+ Qa—Dlayy+5 ) w1+ Bn+ (2a— Dpla,

n=1
<281 —s)(1—a)+26s(1—a) =2F(1 — a).
This shows that f(z) € 25 (k.. ). and hence the proof of Theorem is completed.
Theorem 7. The class X € (k. «, £) is closed under convex linear combination.

Remark 2. Putting & = 0 in Theorem 4, we obtain the result obtained by Mogra et al. [8,
Thoerem 5].
Integral transforms

Theorem 8. If X 57(k a, £) then the integral transforms

~1

F(z)= cJ uf f(uz)du, (c = 0) (4.1)

|:.
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are in the class X 5°(¥) where
(1+af)(2+c)—cB(l—a)

v=vlka Bc)= 4.2
R CE T e T B
The result is best possible for the function
1 B(1-a)
ol e ‘1‘.3
FO=+Ts (43)
Proof. Suppose that X 5 (k,a, £) then we have
1 1 = o,
FE(:j=cJ uf fluz)du = ——Z—" zn.
o o4 = c+n+1
To prove that F.(z) is meromorphically starlike function of order ¥, it is sufficient to show
that
Z (n+y ca, - i
1—y c—n,—ll ' (44)
Since f(z) e X5 (k. @, ) then
n*[(1+ +(2a—1
2: [(1+F)n+ (2a jﬁ]nil (45)
28(1—a) i

n=1

Thus (4.4) will be satisfied if

(n+y)  _nla+pn+Qa—1E]
I-pc+n+D  26(1-a)

for each n,

or

n*[(1+Fn+ 2a—-1)Fl(c+n+ 1) —28(1—a)en
n*[(1+8n+ 2a—-1plc+n+1)+28(1—a)en

(46)
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Since the right hand side of (4.6) is an increasing function of n, putting = =1 in (4.6) we get

- [(1+8)+ (2a—1)B](2+¢c) — 2cf(1 — o)
T+ /) + 2a—1)B1(2+¢) + 2¢B(1 — a)

and hence the proof of Theorem is completed.

Similarly we can find the integral transforms for the class f(z) e X C* (k. a. 5] .

Remark 1. It is interesting to note that for c = 1 and (e, ) = (0,1). Theorem 8 gives that
if f(z)eXs"(k.a £) then

Fi(z)=c¢ J 11Lf[1r,:)du

|:.

Hadamard products

Let the functions be defined by (3.4), then the Hadamard product of f,(z) and f,(z)is
defined by f;(z)

=)

A E) =24 ) aar =(h ). (D

n=1

We prove the following results for functions in the classes X 5" (k. a, £) and Z C*(k, &, )

Theorem 9. Let the functions f;(z)(j = 1.2) defined by (3.4) be in the class 25 ka ).
Then(f; = f2)(z) € 25" (k.@. ), where

B(1+A8)(1—a)’

RO e 52
Sharpness holds for functions
L1 Pl—a)
[@=c+T0ag 7 G=12) (5:3)

Proof. Employing the technique used earlier by Schild and Silverman [10] for univalent

functions, we need to find the largest real parameter ¢ such that
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=]

Zﬂ"‘[(l—ﬁ)ﬂ— (20 — 1) + 1]
26(1— o)

f, 10, = L.
n=1

Since (f;)(z) € 25" (k.a,5) (j = 1.2), we readily see that

oo

Zn"‘[(l—ﬁ)n— (2a—1)8 +1]

L 28(1—a) 1 =

and

in*[u—mn—(za—lm—uﬂ -
28(1— a) n2 =

n=1

By Cauchy-Schwarz inequality we have

iﬂk[(l_mﬂ_@“—l),@—l] .
21'9(1—{1) 3 Hmitpz = L

n=1

Thus it is sufficient to show that

n*[(1+f)n+ (29 — 1)8 + 1]

2}9(1 _ ::g':':' By 1 Wy, 2
A+ P+ Ca-Dp+1]
= 2}9(1_“) Y By 1ty 2

or, equivalently, that

. Q-1+ P+ (2a—1)F+1]
4 Y12 = (l_ﬂ)[(l_}gjﬂ_(zﬁp_ljﬁ—l]'
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Hence, in the light of the inequality (5.7), it is sufficient to prove that
26(1 — a) _(1-9)[(A+F)n+(2a—-1)F+1]

1+ Pn+ a-DF+11 - -0l +Pn+ 2o -Dp+1 %
It follows from (5.10) that
S TP s e DR T G S
Now defining the function G(n) by

o1 28(1+ m)(1+ B)(1— @)’ o)

nf[(1+ Bn+ (2a— 1)+ 1] +457(1 —a)®

We see that G (7] is anincreasing function of n{n = 1). Therefore, we conclude that
B(1+p)(1—a)’
(L+af)*+F*(1—a)’

and hence the proof of Theorem 9 is completed.

e=G6(1)=1- (5.13)

Theorem 10. Let the functions (f;)(z)(j = 1,2) defined by (3.4) be in the class
2C(ka fB). Then (fy = f;)(z) e X C (ko ), where @ isgiven by (5.2). The result is
sharp for functions (f;)(z)(j = 1,2} given by (5.3).

Theorem 11. Let the function (f;)(z) defined by (3.4) be in the class £ 5*(k,a, ). Suppose
also that the function (f>)(z) defined by (3.4) be in the class £ 5°(k.5.5). Then
(fi* f2)(2) e X5 (k.p. ), where

B(1+B)(1-a)(1-4)

S G Gy By T s ey (5.14)
Sharpness holds for functions
ﬁi:j:%_ﬁil_ﬂ): (5.15)

1+ af
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and

L _ L1 B(=-4)

AE =C+ 5557 (5.16)
Proof. We need to find the largest real parameter 2 such that
L+ Bn+ (20 — 1B + 1]
a, g, . =1 517

Since fi(z) € Z5°(k, a. £, we readily see that
O [+ fn+ Qa-1DE+1]
Zl 2B(1—a) Q4 = 1, (5.18)
and since f>(z) € 25°(k.4,£) we readily see that
il An+ 26— DB+
Zl 2,8(1 — d:l fy,o =1 (5.19]
By Cauchy-Schwarz inequality we have
= 1 . i
Y LA+ Dt Ga DEHPIG S On+ G- DE+IP o
J2B(—a) J2B(1—6 Vo

= 1. (5.20)
Thus it is sufficient to show that
n*[(1+f)n+ (2p— 1)B +1]
26(1—p) ) .
1+ fn+ (2a- 1+ 12[(1+F)n+ (26 - 1) +1])2
B V2B -a) 2B -8

By 18y 2

‘\-"I'ﬂ.v!.‘l B2 (52 lj
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or, equivalently, that

_28(0-p)[(1+F)n+ (2a-1)F + E[(1+ B)n+ (26 — 1B + l]
V2B(1—a) J2B(1- 6 [(1+ fIn+ (2p-1)B + 1]

Ja

1-1‘_[14—

Hence, in the light of the inequality (5.20), it is sufficient to prove that

«‘,-"E,S[I—cr] [26(1—4
P+ B)n+ (20— DB = 12[(1+ f)n + (26 — DB + 113
_ 2601 =p)[(1+f)n+ e =D+ (1 + fn+ (20— DB+ 117
B J2B(1—a) 2BA =3 [(1 + B)n + (20— 1)B +1]

(5.23)

It follows from (5.23) that
26(1+n)(1+ F)(1—a)(1l-4)

-

PE TR+ Bt a- DB+ U+ Hn+ (20— DB+ 1 + 4B (L—a)(1-5)

Now defining the function M (n) by

."I-ff[ﬂj
B 26(1+n)(1+A1-a)(1-48)
n*[(1+fn+2a-1)f+1][A+Fn+ (26 —1)F +1] +4B%(1 —a)(1 - &)

we see that M () is an increasing function of n(n = 1). Therefore, we conclude that

1+ (1—a)(1-4)
(1+af)(1+68)+ (1 —a)(1—34)

and hence the proof of Theorem 11 is completed.

p=M(1L)=1-

Theorem 12. Let the function f,(z) defined by (3.4) be in the class £ €*(k, @, 5). Suppose
also that the function f;(z) defined by (3.4) be in the class X € (k. d. 8). Then

(fy* f:)(z) e ZC"(k.p, 5). where p is given by (5.14). Sharpness holds for functions given
by (5.15) and (5.16), respectively.
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Theorem 13. Let the functions (f;)(z)(j = 1,2) defined by (3.4) be in the class
2 57(k,@, ). Then the function

R =2+ ) (@ +a%2) (524

belongs to the class  $*(k,{,3) , where

2R a)
(1+af)*+26°(1—a)?

(5.25)

The result is sharp for functions (f;)(z)(j = 1,2) defined by (5.3).

Proof. By using Lemma lel, we obtain

Z{ [(1+B)n + (za—lzue—l]}
— 28(1— ) med

52 {nk [+ B;(_;LEE{;; DB + 1] anli}_ <1 (5.26)

and

i {n“[(l—ﬁ)n— (2a— 1) + 11}3

- 28(1— a)

52 {ﬁ' [(l_fg;(_l(ft; D+ 1] a_“_,:}_ <1 (2.27)

It follows from (5.26) and (5.27) that
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o 1 (nF[(1+ B)n+ (2a—1)B +1])°, , ; )
ZE{ 26(1—a) } ['ﬂ n1 T @ -“--f}'l 1.

n=1

Therefore, we need to find the largest ¢ such that

I

n[(1+B)n+ (20— 1B +1] EFHU—BE—QH—UB—HF
2B(1-90) 2 26(1—a) ’

that is

481 +m(+p)( - )
WL+ B+ Qa— DB + 117 + 871 - a)?

(=1-

Now defining the function H(n] by

4(1+n)(1+ A1 —a)’
n*[(1+8)n+ (2a —1)8+ 112+ 8% (1 — a)¥

H(n)=1-

we see that H() is anincreasing function of n(n = 1). Therefore, we conclude that

28(1+B)(1—a)?
(1+af)?+282(1—a)?

and hence the proof of Theorem 13 is completed.

{=H(1)=1-

Theorem 14. Let the functions (f;)(z)(j = 1,2} defined by (3.4) be in the class
2C°(k,,f) Then the function h(z) given by (5.24) belongs to the class Z C*(k,{, 5],
where ¢ is given by (5.25). The result is sharp for functions (f;)(z)(j = 1,2) defined by (5.3).
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