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The Effect of Air Resistance on projectiles Motion equation and study
General Solution with air resistance quadratic in the speed

*Marzouga F.Rajab **Mizouna.G Asbig ** Manal.K Zaid **Hager .A.Mohamed

Abstract: This research work study the a projectiles motion without air resistance and
projectiles motion with air resistance by using vector-valued function. We consider two-
dimensional motion of a projectile experiencing a constant gravitational force in the
projectile’s speed and look at launching projectiles, as well as how varying initial velocity
and height affect the launch angle. Finally, we add air resistance to the projectile problem and
compare two different models: air resistance proportional to the projectile’s velocity and air
resistance proportional to velocity squared
We find that :The equations of motions are coupled nonlinear equations. Their solutions have
general properties which are easily visualized, although much different from those obtained

.when an air resistance is neglected

Introduction:

Most introductory physics courses spend a considerable amount of time studying the motion
of projectiles but almost always ignore the air resistance that inevitably impacts the motion of
these objects. In many problems this is an excellent approximation; in others, air resistance is
obviously very important and we need to know how to account for it. In this paper we will
investigate General Solution of motion equation with air resistance quadratic in the speed, but
at first, we try to make compare between the equation of motion with air -resistance and
.without it and how air resistance effects in the motion of falling objects and projectiles

Equations of motion: no air resistance:

We assume that gravity is the only force acting on the projectile after it is launched. So, the
motion occurs in a vertical plane, which can be represented by the xy-coordinate system with
.the origin as a point on Earth’s surface, as shown in Figure 1

Y v, = Initial velocity
h

v(z,)

vy = v(O)

} Initial height

Figure 1

For a projectile of mass m, the force due to gravity is !

F=—mgj Force due to gravity .............. )1(
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where the acceleration due to gravity is g = 32 feet per second per second, or 9.81 meters
.per second per second

By Newton’s Second Law of Motion, this same force produces an acceleration

a = a(t), and satisfies the equation 2

Consequently, the acceleration of the projectile is given by
‘ma =—mgj
which implies that

a=—gj. Acceleration of projectile

We start by finding a position vector as a function of time (t). Beginning with the
acceleration vector

.a = —gj and integrating twice
ve=Ja (t)dt = J-gjdt =— gtj + C,
re=[v(t)ydt=[)-gtj+C1)dt=—12 gt? j+ Ci t + C;

Solving for the constant vectors €1 and C2, we use the fact that
v(0)=vo and r(0)=ro
.C1=v0 and C2=r0

Therefore, the position vector is

ba | =

groj +tvy, + 1

position vector ................. )3( -=Tt

In many projectile problems, the constant vectors ro and vy are not given explicitly. Often,
we are given the initial height h, the initial speed vo and the angle 6 at which the projectile is
launched, as shown in Figure 2

[l voll = v = initial speed

|| o ||l = 7z = initial height

x

x = ||vgyl] cos 6

Figure 2

¥ =|lvoll sin ©

From the given height, we can deduce that
.ro=hj

Because the speed gives the magnitude of the initial velocity, it follows that
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= o
and we can write
[l v,
vo =xi +y]j
= (llwylicos B)i+( |lw,ll sin 6)j
= v0C0s i + vo Sin )

So, the position vector can be written in the form

1

re=--gtij +tvy + 1y position vector .................... 4)

[ |

gtij +tvycosBi + tv, sin 8 + hj
= vo(cos 6) ti +[ h(vo sin O)t = gt*] j

Neglecting air resistance, the path of a projectile launched from an initial height h with
initial speed vy and angle of elevation @ is described by the vector function'

r(t) = vo(cos 6) ti +[ h(vo sin O)t = gt21j .ooveeveenn, (5)
where g is the acceleration due to gravity.
The Normal and Binomial Vectors: At a given point on a smooth space curve r(t
The Normal and Binomial Vectors: At a given point on a smooth space curve r(t), there are

many vectors that are orthogonal to the unit tangent vector T(t) .We single out one by

observing that, because

T(t)=1 for all ¢,
we have T(t) T'(t)=0
o) T'(t) is orthogonal to T(t) .
Note that T'(t) is itself not a unit vector.

But if r ' is also smooth, we can define the principal unit normal vector N t (or simply unit

normal) as

The vector B@)=T({)XN({t) ................0. (6)
is called the binomial vector.

It is perpendicular to both T and N and is also a unit vector as shown in Figure 3
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Figure 3

We can think of the normal vector as indicating the direction in which the curve is turning at
.each point

Equations of motion: linear air resistance

In order to make the projectile problem more realistic, we consider the effects of air
resistance. Air resistance is a force, called the drag force, that acts in the direction opposite
an object’s motion. Air resistance takes the form of a Taylor series where the terms are
powers of the projectile’s velocity. Overall, two of the terms tend to be much larger than all
.the other terms: the v and the v? terms

For this reason, we consider two main types of drag force: linear and quadratic. These
forces
take the form *

Fiin=Dbv F quad = CV2

where b and ¢ are constants with b =BD and ¢ = yD?, where D is the diameter of the object
and B and vy are constants that depend on the nature of the medium.An object subject to air
resistance is modeled by a linear combination of both linear and quadratic drag forces, but in
many cases, one term is much larger than the other, indicating the situation can be modeled
as either linear or quadratic. In order to understand which drag force will be most realistic for
the problem at hand, we estimate the ratio Fquad / Fin, which tells us if one model of air
.resistance can be neglected
When solving the projectile problem, we first consider linear air resistance in order to

show how air resistance is included in projectile motion. We choose this model because
mathematically it is simpler and provides insight into modeling air resistance. Quadratic air
resistance is a more realistic model for our situation, but we will see that the equations of
.motion in this case are not solvable in a closed form using differential equations techniques

We therefore turn to computer approximations to model this motion, but first let us further
.explore the linear model

when we explored the case without air resistance, we solved second order differential
equations for the x- and y-motion of the projectile as functions of time (t). The method here is
the same, except we must consider a force other than gravity acting on the projectile. Drag
force acts in the direction opposing motion, so both the x- and y equations will have a
component of air resistance. Our second order differential equations will be the x- and
ycomponents of acceleration, which we find from Newton’s 2nd law. Bolded values indicate
.a vector, meaning the variable has both a magnitude and direction

We define the drag force to be Fp and the gravitational force is F,. We have!
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(7)eeeeiienne, ma=F=F,+ Fp=mgy - b(x" +y")

and letting k = b/m, we can separate the above equation into x- and y-equations. We have

() = —ki(t)
v(t) = —g — k¥ (1)
x(0) = #(0)=h
7(0) = vcosh; 7(0) = vsind;

is the initial velocity of the projectile. Using separation of variables to solve the x ¥ where
equation, we obtain

x(t) = —kx(t)
#(t) = Ce™™ = veosfe ™t

x(f) = — 292 gkt 4 o = 2oost

) 11 (O K k

(1—e™*)

« We solve for C using the initial condition i{0) = sin &

g tk( sth)=C

g -k 7=)]g kv sinf (e

1 e
V= —[-g+ g+ kvsinf)e™™]

T

Using the initial condition y(0) = h, we integrate once more with respect to t to find the

motion equation fory:

g Z ﬂkt)c
y ) #1)Owsinlle &( k

1 . 1 —&r h] '
#=nh + (vsingd — gt) + = g —e (g + kvsing)] oo v v e e (9)

BAYAN.J@su.edu.ly 729



2021 44 o) suad) deodall OLJI A2
Now that we have the x- and y-equations of motion, we want to eliminate the variable t,

by solving the x-equation for t and substituting this t-equation into the y-equation. We

have
veost -
x(t) = 1 —e ™
() == (1—e™)
1 —xk
_% a
X m [1?5955‘ J t=

which gives us

1 ( —xk

=h rsing I - kvsing =
@ = —E[u-sm, — gin _l]]_k_: [—(g + kvsin )( 5_1) - (10)

veosd VoS

We now have a function for the projectile’s path in terms of x.

EQUATIONS OF MOTION AND SOME GENERAL PROPERTIES OF THEIR
:SOLUTIONS

Physics students are certainly familiar with the solution of projectile problems when
air resistance is neglected. Since, in practice, air resistance is usually not negligible, it
would be of some interest to develop solutions of the equations of motion including an
appropriate drag force. If one assumes a drag force which is linear in the speed, then it is
straightforward to solve the equations of motion. Such a drag force actually occurs for low

.and is dependent upon the viscosity of the fluid «( ﬁﬁeynolds numbers

To determine whether or not it applies, one must calculate the Reynolds number. For a

the viscous drag force and <" sphere of radius r moving in a fluid of density p and viscosity
the Reynolds number are>

F=6mprv forR=1,

R = E?plf’*.r;r_i (11)

The terminal speed U1is then given by

dnrip. g

emyrld = mg = 3

is the sphere’s density. In order that Eq. (11) apply to the whole of a trajectory, «°= where

for speeds up to the terminal speed. This can be considered a minimum R=1 we require
requirement since projectiles are often started off with speeds greater than this. Assuming a

cm?/sec for 0.15/ phéTe which has the density of water, 1 g/cm?, and using the value
air, one finds that Eq. (11) applies when °

r>4x10%cm ......... )12(
Spheres this small would seem to be of little interest. In fact, these small radii are not that

far from the mean free path A of air molecules, which is typically of the order of 10 cm. A
second criterion for the validity of Eq. (11) is’
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We conclude from Eqgs. (12) and (13) that Eq. (11) almost never applies exclusively. It is
known that for spheres with radii and speeds of practical interest a reasonable approximation
to the drag force is:®

F Cp pAv®
2 (14)
The drag coefficient is
™~ -
2
And
Tt Z A

The equations of motion including the drag force of Eq.(14) are more difficult to solve,
however. An exact and explicit solution for vertical free fall, or one-dimensional motion, can
be obtained rather easily’. For two-dimensional motion, however, no such solution appears
to exist. This offers an opportunity to develop approximate solutions to a nonlinear problem
of some pedagogical interest. Thus, in this paper, we derive some simple approximate
solutions for both long and short times. In addition, an exact but implicit solution is
developed which enables accurate numerical solutions to be calculated for comparison.
Finally, we present a description of the quadratic drag force which focuses attention on the
kind of turbulence that is known to be associated with this force law.!° From that, the
equations of motion are

dv,, a .1y

-=—mg — bv, (v, +v;) 2

X

We have chosen the positive y direction to be vertically upward and the constant b to
represent the coefficient in Eq. (14). The natural scale of velocities is set by the terminal

(Thuse V= = 0 and v, = =V speed V, which corresponds to the solution

1,

) RE:

This is the only combination of the available parameters which has velocity units. Given
this speed and the acceleration of gravity, the natural time unit is
'L.l'

r_ Mg
D—(b

9=T

This is a measure of the time required to reach terminal speed. With these two units all
subsequent equations may be expressed in dimensionless form. To this end we define
scaled time, velocity, and displacement variables as follows

t

T = —

T
'-I.-I:-_.‘L.=%‘ i =—r1¢
x V
¥X=— Y=
VT VT
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In terms of these new variables, the equations of motion are
1/
X¥= — Uy (uZ+ud]) 2

................... s u

1
v=—1 — u, (uF+uil iz

The new .T with respect to(*)Here we have used dots to denote derivatives of ux( ) and uy
displacements are i
+ X =Xo g udr

Y=Y+ g uydr
or speeds «* It will be seen that for times

5 5. 1;

U= )us +us.) 2

or displacements X or Y small compared to unity the effects of air resistance will be small.
Discussion
:We describe here some general properties of the solutions of Eq. )15(

1.The most often noted feature of Eq. (15) is the existence of the terminal speed V. Hail
.stones are a good example to use. Their speed with no drag would make them lethal

2.No matter what the velocity is initially, the final velocity is always the same, namely ux=0,
Uy=-1

3.Every path in the x,y plane corresponding to different initial velocities has a different

shape. In the absence of drag every path has the same parabolic shape. Thus, the higher the

initial speed of a projectile for a given upward projection angle the more blunted the forward
.end of its path becomes, i.e., the less symmetrical it is about its peak

4. The maximum horizontal range for a given initial speed occurs at angles less than

and the greater the initial speed, the lower the projection angle that is required. For ¢°45
example, we find that the maximum horizontal range occurs at 36° for an initial speed uo =
2
5.Since ug approaches zero from its initial value uy , there is a maximum horizontal
displacement which will be of the order of uxo in terms of scaled variables (i.e., vxo 7 =tuxoV
7). Similarly, if the projectile is fired upward, it will reach a maximum y dis- placement of
the order of uyo. where uyo 1s the initial value of uy
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