A survey of half-groups

*Mahmoud .O.Fanoush **Dr.Idris.atea, *Abdelmola Mohamed,

Abstract: In this paper, we introduce the idea of half-groups. This is an absolutely new idea and deserves significant consideration. We have imposed a group structure on a half groupoid wherein we have an identity element and each element having a unique inverse under the specified operation, then, at that point, we addressed half groups, subhalf-groups, and normal subhalf-groups. All of the fundamentals discussed in this research were backed by instances and lemmas to demonstrate their validity.

Key words: half-groups, subhalf-groups, normal subhalf-groups.

Introduction:

Furstenberg [1] and Whittake [2] among others, have exhibited postulate systems for groups in terms of the operation x - y = x + (-y). Furstenberg also investigated a system obtained by removing one of his postulates which defines what he called a half-group.

Astructure theorem for half-groups was given in [1], In the present paper, we introduced another new structure theorem for half-groups.[4].

Definition .1.1.[4]Let(H,*)be a half groupoid (a partially closed set

with respect to *) such that

(1) There exists an element $e \in H$, such a * e = e * a = a, $\forall a \in H$, e

is calledidentity element of H

(2) For every $a \in H$, $\exists b \in H$ such that a * b = b * a = e, b is called

the inverse of a.

Then(H,*) is called a half-group.

Lemma.1.2: Let (H, *) be a half-group, then:

- (1) The identity element of H is unique.
- (2) Every $a \in H$ has a unique inverse in H
- (3) For all $a \in H$, $(a^{-1})^{-1} = a$.
- (4) associativity does not hold in H, as there is at least one product that is not defined in H.

ISSN:2790-0614

^{*} Department of Mathematics, Education Faculty, Omar Al-Mukhtar University mahmoud.fanoush@omu.edu.ly

^{**} Department of Mathematics, science Faculty, Omar Al-Mukhtar University idris, atea@omu.edu.ly

^{*} Department of Mathematics, Education Faculty, Omar Al-Mukhtar University abdelmola.mohamed@omu.edu.ly

Proof:

(1) Let H be a half-group with two identities $e, f \in H$

$$\forall a \in H, e * a = a * e = a$$

and
$$a * f = f * a = a$$

$$\Rightarrow a = a * e = a * f \Rightarrow e = f$$
. The identity is unique.

(2) Suppose that $x \in H$, a * x = e and a * y = e,

thenobviously

a * x = a * y for $a, x, y \in H$, there is an element $e \in H$ s, t

a * x = a * y = e by cancelation law $\Rightarrow x = y$.

(3) Let
$$a^{-1}$$
 is the inverse of $(a^{-1})^{-1}$,

(and we know $e = a^{-1} * a$)

$$\Rightarrow a^{-1} * (a^{-1})^{-1} = e = a^{-1} * a$$

$$\Rightarrow a^{-1} * (a^{-1})^{-1} = a^{-1} * a$$

by cancelation law
$$\Rightarrow$$
 $(a^{-1})^{-1} = a$.

$$(a^{-1})^{-1} = a.$$

Note: In next tables in the following examples the blank entries show that the corresponding products are not defined.

Example (1):[4] Let $S = \{1, -i, i\}$, the S is a half-group w.r.t multiplication,

*	1	-i	i
1	1	-i	i
-i	-i		1
i	i	1	

$$(-i(i) = -(-1) = 1 \in S, -i * -i = -1 \notin S, and i * i = -1 \notin S)$$

Definition 1.3[4] .Let (H,*) be a half-group and g a subset of H, if g

itselfisa half-groupw.r.t (*) the g is called a sudhalf-group of H.

Example(2).[4] Let $S = \{e, a, b, c, d\}$, then (S,*) is a half - group,

defined by the following table, (d*c is not defined)

*	e	a	В	c	d
e	e	a	В	c	d
a	a	c	e	b	a
b	b	e	c	a	d
С	С	d	a	e	b
d	d	a	С		e

then $H = \{e, a, b\}$ is a subhalf-group of S.since

*	e	a	b
e	e	a	b
a	a		e
b	b	e	

$$(a*a=c \notin H, and b*b=c \notin H)$$

Definition1.4: A subhalf-group H of a half-group G is called Normal-subhalf-group of Gif:

$$gh = hg$$
 for every $g \in G$.

 $since g^{-1} \in G$ when ever $g \in G$.

may replaced by (1) $g^{-1}Hg = H$ for every $g \in G$.

Now (1) requires:

- (i) for any $g \in G$ and any $h \in H$, then $g^{-1} \circ h \circ g \in H$.
- (ii) for any $g \in G$ each $h \in H$, there exists some $k \in H$ s.t

$$g^{-1} \circ k \circ g = h$$
, or $k \circ g = g \circ h$,

we shall show that (i) implies (ii)

Consider any $h \in H$, by $(i)(g^{-1})^{-1} \circ h \circ g^{-1} = g \circ h \circ g^{-1} = k \in H$.

since
$$g^{-1} \in G$$
 ,then $g^{-1} \circ k \circ g = h$,as requierd.

Examples(3): Every subhalf-group H of an abelian half- group G is

normal subhalf-group of G: since

 $g \circ h = h \circ g$ for any $g \in G$ and every $h \in H$.

lemma1.5: H is normal subhalf-group of half-group G, if and only if

$$gHg^{-1} = H \text{ for every } g \in G.$$

Proof: if $gHg^{-1} = H$, for every $g \in G$.

certainly $gHg^{-1} \subset H$, so H is normal subhalf-group in G.

suppose H is normal subhalf-group in G,

Thus if $g \in G$, $gHg^{-1} \subset H$, and

$$g^{-1}Hg = g^{-1}H(g^{-1})^{-1} \subset H.$$

now, since $g^{-1}Hg \subset H$, $H = g(g^{-1}Hg)g^{-1} \subset gHg^{-1} \subset H$,

whence $H = gHg^{-1}$.

تقدمة عن نصف الزمر

المستخلص: في هذه الورقة البحثية نستعرض مفهوم نصف الزمرة ، و هو مفهوم حديث في تعريفه و تطوره حيث قدمنا في البداية تركيبة الزمرة الاولية ذات العنصر المحايد و المعكوس الوحيد لكل عنصر من عناصر الزمرة تحت نفس العملية ، تحديداً قدمنا التعريف الحديث لنصف الزمرة، و نصف الزمرة الفرعية ، و نصف الزمرة الفرعية العادية، ومن خلال هذه الورقة قدمنا التعريفات المهمة السابقة و أثبتنا بعض النظريات المتعلقة بموضوع االبحث.

Reference:

- [1] Harry Furstenberg " The inverse operation in groups" (Yeshiva University) December 1955
- [2] James v. Whittaker, "On the structure of Half-groups" (University of British Columbia) October 1958

Downloaded from https://www.cambridge.org/core.

- [3] R.H.Bruck ."A survery of Binary Systems", Springer Verlag.(1958).
- [4] Arun S.Muktibodh. "Smarandache Hlaf-group "International.j.Math.Cambin. Vol.2 (2008). 46-50.

ISSN:2790-0614