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   Abstract: This paper is concerned with the oscillation theory of a class of second order 

nonlinear differential equations. Several sufficient conditions for the oscillation of all 

solutions are established. By using the average property of the integrals of the alternating 

coefficients as well as the Riccati transformation many oscillatory theorems are proved. 

However, and as it will be explained, the obtained results here generalize and improve some 

previous results in the literature. An example is provided to show the applicability of the 

obtained results. 
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1. Introduction 

This research is dealing with the oscillation property of the following second order nonlinear 
differential equation 

0,0)()()())(()( 














txsigntxtqtxftr                                     (E)                              

where  and  are continuous functions on the interval [ ,  is a positive 

function on  and   , f is a continuous function also on  . Our attention here is 

concentrated only to such solution  of the differential equation (E) which exists on some 

interval [   

         In general, the theory of the oscillation of second order differential equations with 

alternating coefficients has been extensively investigated. Many papers motivated an especial 

technique depending on the averaging characteristic of the integrals of the alternating 

coefficients, see for instance the papers of Kamenev [8], Butler [4], Grace [6], Wong [13], 

and Yan [14] and the references cited therein. However, readers are invited to have an 

extensive look on the literature concerning this object, see [3, 5, 7, 9-12]. Recently, Ahmed 

and Dinar [2] and Ahmed et al. [1] studied the Eq. (E) in the case when  and derived 

some oscillation criterions with respect to different ranges of  , that is (  or  ).  

            In fact, we feel that it is of interest to establish new oscillation criterions using the 

known Kamenev’s type condition with removing from  some restrictions about its range of 

values. During this study, we proceed the discussion in a way similar to that in Yan [14, 

Theorem 2]. We also posed an open problem that related to the possible values of .  

            As we mentioned before, to simplify the proofs of our main results here, the main 

tools largely involved are integral averaging techniques with the generalized Riccati 

transformation. 

As usual, the solution  of Eq. (E) is called oscillatory if it has arbitrarily large zeros and 

nonoscillatory if it is positive or negative eventually. In the sequence, Eq. (E) is called 

oscillatory if all its solutions are oscillatory.  

 

2. Main Results  
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Theorem 2.1: Suppose that  
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Then equation (E) is oscillatory for 10   and . 

Proof: For the sake of a contradiction, we assume that there exists a solution )(tx  which may 

assumed to be eventually positive on the interval  ,1T  for some .001  tT  [if the solution 

)(tx   is eventually negative, the proof is similar]. Define 
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Using Eq. (E) we get 
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which implies that 

                (2.2) 

By using condition (H1) we obtain that 

 

Also by using (H1), since , then we have 

 ,    21        (2.3) 
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Or we can get from the equation (2.2) that 

                          (2.4) 

By employing the condition (H1), since  , Then (2.4) becomes 

 

Now, for the behaviour of )(tx


, consider the following three cases:  

Case1. )(tx


is oscillatory. Then there exists a sequence  
1mmt  in  ,1T  with 


m

m
tlim  

such that 0)( 


mtx , (m=1,2,3,….). Thus (2.3) gives  

 

By condition (H2) we conclude that 
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 Therefore, for some constant   we have  
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    By using Schwarz inequality, we note that  
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 On the other hand we have that   
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  which implies by (2.6) that  
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 There exists 12 TT   and a positive constant  such that 
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  Using (2.8) in (2.1) we get  
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where 



                                ISSN:2790-06142023 يناير                                عشر        الرابععدد ال 

BAYAN.J@su.edu.ly                                     220                                             المحكَّمة مجلة البيان العلمية

1

1
)()(

1
)(
















 

t

T
sr

ds

tr
ta  , 

and consequently, for all 2Tst  , we obtain 

 

Now, since 








t

s

t

s

duuwutswstduuwut )()()()()()( 1   

Then        

 

 (2.10) 

So, we obtain 

 

 (2.11) 

From which it follows that 
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Dividing (2.12) by t , we obtain that 

                           (2.13) 

Since  

),1(,)(    stt  

Then  

1)()()(    ststtst  

 

Substituting in (2.13) we obtain  

 

Clearly that by using (H5), by taking the lower limit of above inequality as t , we get 
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2,)()( Tssws  , 

which implies that 

)()( 22 sws  ;          0),(max)( tt    

Next, for all , define the functions  and  as follows: 
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 Form (2.11), we get 
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 and we see that (H5) implies that 
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Hence, by taking into account (H5), we conclude 
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Together with (H4); (2.16) shows that there exists a sequence 
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Next, by taking the upper limit as t  in (2.14) and using (2.17), we get                   
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Hence for all sufficiently large ,  
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Then by the Leibnitz rule, we can see that  

 

Since  is a positive increasing function on , we see that btz
t




)(lim , where b  

or is a positive constant. Suppose that b , then 
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z   and by using (2.18) it 

follows that 
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 By (2.18) and (2.19) it can be shown that, for all large n , 
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On the other hand, by Schwarz inequality, we have for all large n  that  
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But we can get by (2.17) that  

 

Substituting in (2.21), it follows 
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But this is a contradiction with both of (2.19) and (2.20) which gives us the fact that 
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 By taking into consideration the inequality (2.13), we have  
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which contradicts the condition (H6). 

Case 2. 0)( 


tx  on  ,3T for some 13 TT  . Thus  
)(
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 is positive. By the 

condition (H2) and (2.3) it follows that (2.5) holds, and hence we can complete the proof by 

following the same procedure of case1. 

Case 3. 0)( 


tx  on  ,3T  for some 13 TT  . If (2.5) holds, then we can arrive at a 

contradiction by the procedure of case1. So, we suppose that the integral in (2.5) diverges. 

Using (H2) in (2.3) we have the following: Since 
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Integrating the above inequality from T to t we obtain that  

 

 

 

 

That is 

 



                                ISSN:2790-06142023 يناير                                عشر        الرابععدد ال 

BAYAN.J@su.edu.ly                                     224                                             المحكَّمة مجلة البيان العلمية

which together with (2.18) yields 

                                                           (2.22) 

Now, since 0)( 


tx  for 13 TTt  , then, we have   
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Substituting in inequality (2.22) we obtain that 
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 Since 1,0)( Tttx   .Then for all 1Tt   there exists 0  such that )(tx . In (2.24) we 
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Taking the limit of (2.25) as t  we obtain by using the condition (H3) that 
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but this contradicts the fact that 0)( tx  for 1Tt   and the proof is complete.  

Example 2.1 Consider the differential equation  
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where k  is a positive constant . Set kss  sin)( , and choose an integer N  such that 
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Hence by Theorem 2.1, we conclude that the given equation is oscillatory. 

The following result is concerned with the oscillatory solution of equation (E) when the 

hypothesis (H4) fails. 
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Theorem 2.2 Suppose that there exists a constant   ,1  such that hypothesis (H1)-(H3) 

hold and for every 0   
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Then Eq. (E) is oscillatory for 10   and . 

Proof: For the sake of a contradiction, we assume that there exists a solution )(tx  which may 

assumed to be eventually positive on the interval  ,1T  for some .001  tT  [if the solution 

)(tx  is eventually negative, the proof is similar]. As in the proof of Theorem 2.1 (case1), we 

obtain (2.12). Dividing it by t  and take the upper limit as t , we obtain  

 

Letting 2Ts   in the above inequality to get 

 

which leads to a contradiction  for the condition (H7). 

The proofs in the cases when 


x  is either positive or negative on   122 ,, TTT   are similar 

to the proofs in cases 2 and 3 of Theorem 2.1, thus they will be omitted. 

 Corollary 2.1: Let condition (H7) in Theorem 2.2 be replaced by  
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  Then the conclusion of Theorem 2.2 holds. 

 Proof: : For the sake of a contradiction, we assume that there exists a solution )(tx  a) which 

may assumed to be eventually positive on the interval  ,1T  for some .001  tT  [if the 

solution )(tx  is eventually negative, the proof is similar]. As in the proof of Theorem 2.1 

(case1), we obtain (2.12), and by dividing it by t  and take the upper limit as t , we 

obtain 
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which with condition (H9) implies that  
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But this is a contradiction with the condition (H8). The proofs of cases 2 and 3 are immediate 
consequences of cases 2 and 3 of Theorem 2.1 and hence they will be omitted. 
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Remark 2.1: Theorems 2.1 and 2.2 extend and improve some of previous results in the 

literature. See Grace [6], Wong [12, 13], Philos [10], Yan [14] and the recent papers of 

Ahmed and Dinar [2] and Ahmed et al. [1]. 

3.  Conclusion 

In conclusion, by the generalized Riccati transformation and the integral averages techniques, 

some new sufficient conditions are derived. The results obtained here are valid for the 

oscillation of Eq. (E) for all 10   and . So, we think that, it will be of an interest to study 

the oscillation of Eq. (E) in the case when  and give sufficient conditions for the 

oscillation of all solutions. 
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