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Averaging Techniques in The Oscillations of Nonlinear Differential Equations With
Alternating Coefficients

*Fatima N. Ahmed”

Abstract: This paper is concerned with the oscillation theory of a class of second order
nonlinear differential equations. Several sufficient conditions for the oscillation of all
solutions are established. By using the average property of the integrals of the alternating
coefficients as well as the Riccati transformation many oscillatory theorems are proved.
However, and as it will be explained, the obtained results here generalize and improve some
previous results in the literature. An example is provided to show the applicability of the
obtained results.

Keywords. Oscillations; Averaging Techniques; Alternating Coefficients; Nonlinear
Differential Equations; Second Order.
1. Introduction

This research is dealing with the oscillation property of the following second order nonlinear
differential equation

(r(t) f ().((t))j + q(t)|x(t)|y signx(t)=0 , y>0 (E)

where g and r are continuous functions on the interval [ty o), t, = t, r(t) is a positive
function on R and ¥ = 0 , f is a continuous function also on IR . Our attention here is
concentrated only to such solution x(t) of the differential equation (E) which exists on some
interval [ty 00 ), t, = 0.

In general, the theory of the oscillation of second order differential equations with
alternating coefficients has been extensively investigated. Many papers motivated an especial
technique depending on the averaging characteristic of the integrals of the alternating
coefficients, see for instance the papers of Kamenev [8], Butler [4], Grace [6], Wong [13],
and Yan [14] and the references cited therein. However, readers are invited to have an
extensive look on the literature concerning this object, see [3, 5, 7, 9-12]. Recently, Ahmed
and Dinar [2] and Ahmed et al. [1] studied the Eq. (E) in the case when f(¥) = ¥ and derived

some oscillation criterions with respect to different ranges of ¥, thatis (0 < y <1 or y = 1).
In fact, we feel that it is of interest to establish new oscillation criterions using the
known Kamenev’s type condition with removing from y some restrictions about its range of

values. During this study, we proceed the discussion in a way similar to that in Yan [14,
Theorem 2]. We also posed an open problem that related to the possible values of y.

As we mentioned before, to simplify the proofs of our main results here, the main
tools largely involved are integral averaging techniques with the generalized Riccati
transformation.

As usual, the solution x(t) of Eq. (E) is called oscillatory if it has arbitrarily large zeros and

nonoscillatory if it is positive or negative eventually. In the sequence, Eq. (E) is called
oscillatory if all its solutions are oscillatory.

2. Main Results
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Theorem 2.1: Suppose that
(H) fO)=yg(y); 0=A=<g(y)<B

t
(Ho) !iminqu(s)ds>_oo,
t

T ds
(H3) E:OO’

Suppose in addition that there exists a continuous function
¢:[ty,0) >R and a e (1,0)
such that

t

(Ha) !imsuptia.[(t—u)“q(u)du<oo,

t

and for every 6 >0
t

v timint (k-0 o) -

S

Oa’
4ya(u)

}du > ¢(9),

)  [a()2(s)ds = w0,

where
-1
1 (¢ ds
¢, (t) = max{p(t),0} and a(t)=——|[—| .
w0 r(t) tj r(s)
Then equation (E) is oscillatory for  >0and y = 1.

Proof: For the sake of a contradiction, we assume that there exists a solution x(t) which may
assumed to be eventually positive on the interval [Tl,oo) for some T, >t, > 0. [if the solution
x(t) is eventually negative, the proof is similar]. Define

w(t) = M fort>T,

Using Eq. (E) we get

XOTO) (g @1

w(t) =-a() -7 1) 7 o

which implies that

rie) fla(e) ris(s) flals) r(T ) f(20T,)
r.r-v':r]'r :I “r;_ xF+iis) :Ids + “r;_ q(s)ds=Cy, € = ;Y(l"-_:' -~ (2.2)
By using condition (H;) we obtain that
r()x(0)g(x(2) | [* “r()i*()g(i(s))
@) +L_q(5)d”rff o oG fEh

Also by using (H), since 0 < 4 < g(v), then we have

rie)x(e)gl 20 2

) + f;_ g(s)ds + yA _r; r(s) (;;;j})_ ds<C; t=T,, f=(y+1)2 (2.3)

=¥ i)
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Or we can get from the equation (2.2) that

wi(t) —I-_I" q(s)ds + }F_Ir J wi(s)ds=C,, t=T, (2.4)

:ls}glxls}

By employing the condition (H,), since g(v) < B, Then (2.4) becomes

208-1) (o
w(rj+ffr(ﬂds+rf Wxt(;)

Now, for the behaviour of x(t) , consider the following three cases:

(slds=cC,, t=T,

||
8

Casel. x(t)is oscillatory. Then there exists a sequence {t,, ), in [T,,0) with limt,

m—o0

such that x(t.) =0, (m=1,2,3,....). Thus (2.3) gives

vA Lm r(s) (;;2))_ ds = C, — Lmq(sjdsx m=12,..

By condition (H2) we conclude that

j (s){ (?))] ds < oo . (2.5)

Therefore, for some constant N = @, we have

jr(s)[x);(z"s))J ds<N fort=T,"

By using Schwarz inequality, we note that

L x(s) i e () C (i X(s) | g4s|<N
_I.[[X/J‘(S)st - 1"[ /7r(s) \/r(s)[xﬁ(s)st L r( )J(J. ( )[ ﬂ( )J SJ II’(S)
(2.6)
On the other hand we have that
; ).((5) _ 1- 1-
%[7)(/}(3) ds|= "y ‘ X7 () — xA (T,
which implies by (2.6) that
| X7 (1) — X () | < |1- ﬁ’l[ ds) (2.7)
. r(s)
There exists T, 2T, and a positive constant M such that
7 ()] < M [Tjr(::)jz forallt>T, (2.8)
Using (2.8) in (2.1) we get
w(t) < —q(t) —#a(t)w: (t), t=T, (2.9)

where
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ds N
0= r(t)(I r(s)}

and consequently, for all t>s>T,, we obtain

J (¢~ )du < - a(w) w? (u)du
Now, since

J - 0)" w)du =~ 5)"w(s) ] (- 0)* “wiu)
Then S S

] (£ — w)"q(u)du

=(t—s5)wl(s) —a J- (t —u)® hr(w)da BL: J- (t —w)%a(w) w?(uw)due

(2.10)
So, we obtain

| (£ — w)"q()du

=({t—s5)%wl(s) — J-r[ (t —w)alwIw?*(u) + alt —u)=" J‘w(u,)] du

BM?
(2.11)
From which it follows that
£ . Ba*M*(t —u)*?
J; (t —u)%g(u) — el du
< (t—s5)"w(s)
¢ alt — u,)%_l
— ———wilu)| du
-[;- 2y ya(u) ( j]
<(t-s)*w(s) ,s=>T,
(2.12)
Dividing (2.12) by t“, we obtain that
r-ia_l':(t — )" e [( Iw;] du = (2.13)
Since
t <(t-95)“,ae(@,o)
Then

(t—9)“t™ <(t—s)*(t—s) ™ =1

Substituting in (2.13) we obtain
J- (t — )= 2 [(t— u)q(u) —

(t)

Clearly that by using (Hs), by taking the lower limit of above inequality as t — oo, we get

du = w(s)
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#(S) <w(s) ,s>T,,
which implies that
B <WA(s) 5 ¢ (t) = max{g(t).0}

Next, for all t = T, define the functions v(t) and z(t) as follows:

y(t) =t™ j'a(t —u)**w(u)du,

z(t) =t7¢ J. BL: (t — u)®a(w)w?(uw)du

Form (2.11), we get

r

v(t) +z(t) = t'“J- [cx[t —u)® twlu) +

T,

¥
BM?

(t —u)®alu)w? (u)] du

t

<t(t-T, )\ w(T,) -t [ (t—u)"q(u)du

T
and we see that (Hs) implies that
!Lrginft“j(t—u)“q(u)duz #(s) , s>T,
Since S
!Lrgsupt’“ 't[(t —u)“qg(u)du > !Lrginf t j(t —u)“q(u)du
T, 7,

Hence, by taking into account (Hs), we conclude

(2.14)

(2.15)

lim, ., supt™© f; (t —u)®q(wdu =0(T,) + lim z'nfi—‘:‘ te f; TJ} (t —u)* *du
" t— oo z alu

Together with (H,); (2.16) shows that there exists a sequence
{Tn}nzl,..’ r,>T,,n=12,.... . limz, =0

t—o0

such that

. BEM* - Tn a” _ =2
lim,, . o t ~rr= —ﬂcu}(t w)* “du < w

Next, by taking the upper limit as t — oo in (2.14) and using (2.17), we get

imsup[y() + 2(0)< w(T,) - limsupt™* [ ~u)” q)d

<w(T,) - !Lnginf t j(t —uw)“q(u)du

T,

<W(T,)~4(T,) =k

Hence for all sufficiently large n,

y(z,) + 2(z,) <k
Since

(2.18)

(2.16)

(2.17)
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t

2(t) = #I(l—%) a(u)w? (u)du > 0

T

Then by the Leibnitz rule, we can see that

£ e—1
Z(t) = td J- (1 —;) ;—th(u)w: (w)du = 0
T

BM?
Since z(t) is a positive increasing function on t = T, we see that !LT z(t)=b, where b=o0
or is a positive constant. Suppose that b =0, then limz(z,) = and by using (2.18) it
follows that n%
lim, . v(r,) <k —lim_ __z(r,)<k—o=—w (2.19)

By (2.18) and (2.19) it can be shown that, for all large 7, ,

¥(@) <o-1<0,0=o=<1,2z(1,) =0 (2.20)
2(z,)
On the other hand, by Schwarz inequality, we have for all large z, that
Tn | ’
0=<yi(r,) =1, " J. a(r, —u)* ! |a[uj w (1) due
_ﬂ|a[u,)

Tz
L BME T e 1
=\, > a“(r, —u) _a[u,) du
Tz

Tn
X (ru T BFME J. a“(r, — u)"a(w)w’(u) du)
T:

Therefore,
. BM? Tn g ]
< y(1,) < ”—R‘J. a_(rn — )% 2 du
z(ru] ¥ Ta CI[IL]
This implies that
2 . .
o< limY@) limy( ) xlimYE) < fim 20 - i A
n—>0 Z( n n—o0 n—o Z(Tn) n—oa ¥ w alu

(2.21)
But we can get by (2.17) that

BEM* LS .
limr, ~° —(r, —u)* “du<owm
y o n a:[u,] n

T,

Substituting in (2.21), it follows
y(z,)

0<limy(r,)xlim—"- <.

n—o0 Z(Tn
But this is a contradiction with both of (2.19) and (2.20) which gives us the fact that
limz(t) =b <.

t—wo

By taking into consideration the inequality (2.13), we have
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lim, .t~ f; (t —uw)®a(w)0, (w)du <lim,__ t™° f; (t — w)® a(u)w(w)du =

B limz(t) < oo
¥ t—oo

which contradicts the condition (Hg).

rt) x(®g(x®)

X (t)
condition (Hz) and (2.3) it follows that (2.5) holds, and hence we can complete the proof by
following the same procedure of casel.

Case 2. ;<(t)>0 on [T,,0)for some T, >T,. Thus Is positive. By the

Case 3. x(t)<0 on [T,,0) for some T,>T,. If (2.5) holds, then we can arrive at a

contradiction by the procedure of casel. So, we suppose that the integral in (2.5) diverges.
Using (H2) in (2.3) we have the following: Since

t t
—!imsuqu(s)ds<—!iminqu(s)ds<oo
Tl Tl

Then there exists a constant L such that

jq(s)ds >-L

Tl
Since g(v) =B and ;<(t) <0, then we obtain that
_ . £ - 3
r(t]x[t]E_ EJ‘ r(s]:fr [s]d ’ C:f.'l—l-L
x¥(t) B I, x¥*(s) B
Now, choose T >T, such that
yA [Fr(s)i*(s)

. ds=14+C
B Jr, x¥*(s) ’

which implies that

—r(t)x(t)
x¥(t
( rﬂi(ﬂ) L _YAx(®)
A r07@ \ " Bx(e )2 B x(0
C+ B fra =F+Hi(g) ds [ ] [ ]
Integrating the above inequality from T to t we obtain that
yAr(s)x?(s)
B y+1

f TS A )
J ygres T ds = —— ds

T —C—|—%fra;du B Jr x(s)

_x.:r"+'_|:u:|

That is
yA [fr(u)x®(w) - x(T) %
W, ] (o)

B J x4 u)

In [—C +
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which together with (2.18) yields

JZ
—r(t)x(t) x(TI\ B
=
@ (x(t] ) (2.22)
Now, since ;<(t) <0 for t>T, >T,, then, we have
r4 r4
Xt)<x(T),T>T, and x5 (t) < x5 (T) (2.23)

Az
But we assumed that x(t) >0, then x A (t) > 0. Thus, (2.23) gives us that
rd

x(T)\®
(_x m) -1
Substituting in inequality (2.22) we obtain that

X(t)

—r(t
Ow”

So we have

—r(t) x(t) > X7 (t) (2.24)

Since x(t)>0,t>T, .Then for all t>T, there exists & >0 such thatx(t) > 6 . In (2.24) we
get

—rt)x(t) > 67,
which it follows that

X(t) < x(T)-67 ﬁ (2.25)
7 1(s)
Taking the limit of (2.25) as t-—>o we obtain by using the condition (Hs) that
limx(t) = —o , but this contradicts the fact that x(t) >0 for t >T, and the proof is complete.

t—o0

Example 2.1 Consider the differential equation

x(t)e 20

e ® 11

(t) +cost[x(t)|" signx(t) =0, t>t,;>0 ,

y>0 and y=#1.
We note that

BAYAN.J@su.edu.ly 224 WS dakadl OLI A2



2023 ,u Ao ) sl ISSN:2790-0614

(i) Since

. . o (Y X(O)
£ (x(t) = x(t) + X0
e ® 41
Then
. X(t) .
1< g(x(®) =1+~ <2 forall x(t)eR,
e*® 41

t t
(n)!nninfjq(s)ds=!nninfjcossds
to to

= liminf [sint —sint, |

t—>o

> —00 !

(i) Ti ds:Tsds:oo ,
r(s)
taking a=2 , we have
1 1

- - 2 _ - il _ 2
(iin) !Lrgsupt—ztj(t—u) q(u)du_!LTSUptztI(t u)“cosudu

: 1 : , :
=I|msupt—2[t23|nu —2tusinu—2tcosu + u”sinu

tow
+2ucosu - 2sinu || =-sint, <o,
R :
(iv) liminf —J{(t —u)?cosu —i} du>-sins—Kk,
t—owo t 7/u
where k is a positive constant . Set ¢(s) = —sins—k, and choose an integer N such that

S

QN+ﬂﬂ+%2%.

Then for all integers n > N and (2n+1)7z+%£ss2(n+l) 7[—%, we have

#(s)=-sins—k>5s,
where & is a small constant . Thus,

F X n+l) z7—7%,
!imfa(s)¢+2(8)ds 225212( DT S ds = oo
—>oot0 oy

(2n+l)z+7,

Hence by Theorem 2.1, we conclude that the given equation is oscillatory.

The following result is concerned with the oscillatory solution of equation (E) when the
hypothesis (H,) fails.
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Theorem 2.2 Suppose that there exists a constant « e (1,o0) such that hypothesis (Hx)-(Ha)
hold and for every 6 >0

(H7) !Lngsup;j(t—u)“2|:(t u)zq(u)—4 ():|du:oo’

O [I r(s)]

Then Eq. (E) is oscillatory fory >0 and y #1.

where

Proof: For the sake of a contradiction, we assume that there exists a solution x(t) which may
assumed to be eventually positive on the interval [Tl,oo) for some T, >t; >0. [if the solution
x(t) is eventually negative, the proof is similar]. As in the proof of Theorem 2.1 (casel), we
obtain (2.12). Dividing it by t* and take the upper limit as t — «, we obtain

11_{1; sup t~ “’J- (t —u)= = ([t — ) ?g(w) — dl-yc;[ ;)du = wi(s)
Letting s=T, in the above inequality to get
ll_li]c}: sup t- “'J- (t — )™ 2 ([t — u)?qu) — 4:;;?;]) du = wi(T,)

which leads to a contradiction for the condition (H-).

The proofs in the cases when X is either positive or negative on [Tz,oo) ,T, 2T, are similar
to the proofs in cases 2 and 3 of Theorem 2.1, thus they will be omitted.
Corollary 2.1: Let condition (H7) in Theorem 2.2 be replaced by

(He) !Lngsup—j(t—u)“q(u)du—w'
(Hg) - (t_u)a 2 a? o
!'_,”QSUptaJ. a(u) du <

Then the conclusion of Theorem 2.2 holds.

Proof: : For the sake of a contradiction, we assume that there exists a solution x(t) a) which
may assumed to be eventually positive on the interval [Tl,oo) for some T, >t, >0. [if the
solution x(t) is eventually negative, the proof is similar]. As in the proof of Theorem 2.1

(casel), we obtain (2.12), and by dividing it by t* and take the upper limit as t — «, we
obtain

_ v BAMZ Fat(t— u)v
lim sup t— (t — u)g(u)du =< lim sup = ———du + wis)
t— oo - t—oa 4y - af i)

Or

1

1 1 t x & —_—
limsup - [ (t-u)* q(u)du < lim,_. sup=—¢ ™= |
tow ta 5 4y

LR =
ra (W™ +w(T,)

s a(u

which with condition (Hy) implies that

Ilmsupij(t—u)“q(u)du <o,

t—oowo
T,

But this is a contradiction with the condition (Hg). The proofs of cases 2 and 3 are immediate
consequences of cases 2 and 3 of Theorem 2.1 and hence they will be omitted.
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Remark 2.1: Theorems 2.1 and 2.2 extend and improve some of previous results in the
literature. See Grace [6], Wong [12, 13], Philos [10], Yan [14] and the recent papers of
Ahmed and Dinar [2] and Ahmed et al. [1].

3. Conclusion

In conclusion, by the generalized Riccati transformation and the integral averages techniques,
some new sufficient conditions are derived. The results obtained here are valid for the
oscillation of Eq. (E) for all » >0and y = 1. So, we think that, it will be of an interest to study

the oscillation of Eq. (E) in the case when ¥y =1 and give sufficient conditions for the
oscillation of all solutions.
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