
 

Abstract 

Nehari-type inequalities for normalized univalent functions are combined with elementary 
monotonicity arguments to give quick and simple proofs for numerous sharp two-point distortion 
theorems for conformal maps. These inequalities are used to prove two theorems of sharp two-point 
distortion theorems for conformal maps from the unit disk into the unit disk equipped with 
hyperbolic geometry. 
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1. Introduction 

The study of distortion under the conformal maps started at first since 1994, where the 

first paper was published by S. Kim and D. Minda [5] under the title “ two-point 

distortion theorems for univalent function”. After three years and so, again D. Minda and 

W. Ma [6] they published another paper. Also, in 1999 and 2000 W. Ma and D. Minda [7, 

8] published more papers about the same kind of theorems. In [5] through [14] the 

publishers used different approaches in their proofs, like differential geometry, general 

coefficient theory, and control theory to prove these kinds of theorems. 

Our aim of this research to prove same kind of theorems concerning the distortion in 

conformal mapping for univalent function. The first theorem says that: If f : D → D is 

univalent function, then for any z1 , z2   D and p  0 , where D is the unit disk, then we 

have the inequality (3). The second theorem says that: If: f : D → D is univalent, then for 

any two distinct points z1, z2  D , and any p  0 , then we have the inequalities (8). 
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D 

In our research we used different approaches to prove these kind of theorems, that is; we 

used the Nehari-type inequalities with elementary monotonicity arguments to give quick 

and simple proofs. The distortions in conformal mapping in hyperbolic geometry was 

measured by the quantity of differential operator DD   f (z) which defined below. The 
 

hyperbolic distance with metric space d D defined by 

d ( , z) =  − z  a, a  0 for all  , z in D 
 

We consider the class of conformal maps related to hyperbolic geometry: 

Conformal maps from the unit disk D with the hyperbolic distance d D 

D with the hyperbolic distance d D . 

into the unit disc 

If f is a conformal map from the metric space (D, d D ) , then the local length 
 

distortion of f at a point z  D is measured by the quantity 

D f (z) = lim 
d D ( f ( ), f (z)) 

D 
 →z 

 

d D ( , z) 
.
 

A two-point distortion theorem for conformal maps f : (D, d D ) → (D, d D ) provide 

sharp upper and lower bounds for the global length distortion d D ( f (z1), f (z2 )) for two 

points z1 , z2   D in terms of the local length distortion DD   f (z1 ) and DD f (z2 ) at 
 

these two points as well at the hyperbolic distance d D (z1 , z2 ) between z1 and z2 . 

Recently, a multitude of two-point distortion theorems for univalent function has been 

obtained using : 

(a) Differential geometric methods [1-5], 

(b) The general coefficient theorem [3], 

(c) Control theory [13], [14]. 

Here, we show how Nehari-type inequalities for univalent functions can effectively and 

systematically be combined with elementary monotonicity argument to establish new 

distortion theorem for conformal maps. As a byproduct, we also obtain quick proofs of a 

distortion estimate due to Jenkins [3], [4] and Ma and Minda [7]. 

If f : D → D is a (bounded) conformal map, then it is natural to consider f   as a map 
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p )p 

 

 

f : (D, d D ) → (D, d D ) . Now, the local length distortion of f at a point 

[14]: 

z  D is given by 

d ( f ( ), f (z)) 
D f (z) = lim   D = f (z) 

D 
 →z d D ( , z) 1 − f (z) 2 

 

which might be called (hyperbolic-hyperbolic) derivative of   f at z  D . A two-point 

distortion theorems for bounded univalent functions f : D → D aim at giving upper and 

lower bounds for the global length distortion of f : (D, d D ) → (D, d D ) at two given points 

z1 and z2 in terms of the local length distortion at these points. 

There are almost natural quantities to measure the local length distortion of a 

conformal map f : (D, d D ) → (D, d D ) at two points z1 and z2 . 

Ma and Minda [6] (see [13]) employed the expression 

 D f (z )  
p 

 D f (z ) 

 
1 

 
 

 
p  p 

 D 
1  +  D 2    1 − D f (z )  1 − D f (z )   

 D 1       D 2        
,   p  R (1) 

whereas Jenkins [4] used the quantity 

(DD 

 
f (z1 

 
) p + 

 

1 
 

 

DD f (z2 ) ,
 

 
p  R 

 

, (2) 

to state sharp upper and lower bounds for the local length distortion of f . 

We would like to emphasize that in some case formula (1) gives better results than 

formula (2), whereas in other cases (1) is more advantageous (see [14]) for a discussion 

of this matter. Here, we focus on the quantity (2) and establish the following sharp upper 

and lower bounds for the locale length distortion of f in terms of (2) for negative 

parameters p . 

2. Main Results 

 
Theorem 2.1 

1 − z 2 

http://www.su.edu.ly/rcc


Salem Ibrahim El-Gawi and Ayad M. Shok 

susj, www.su.edu.ly/rcc Vol 4(2), 96–107, December 2014 99 

 

 

21 p 

p 

 
 

If f : D → D is univalent, then for any z1 , z2  D and any p  0 , we have 

tanh(d D 

 
( f (z1 ), f (z2 )))  ( DD 

 
f (z1 ) + 

 
DD   f (z2 ) 

p )1  p  

 
tanh (d D (z1 , z2 )) 

. (3)
 

 

Note that equality holds for two distinct points z1 and z2 if and only if f maps 

D onto D slit along two hyperbolic rays on the hyperbolic geodesic  which is 
 

perpendicular to the hyperbolic geodesic joining f (z1 ) and f (z2 ) and such that 

f (z1 ) and f (z2 ) are symmetric with respect to  . Conversely, if 
 

f : D → D is a 

non-constant analytic function satisfying (3), then f is univalent. 

2.2 Proof 
 

We first recall the Nehari inequalities for bounded univalent functions. Let 

f : D → D be a univalent function, z1 , z2 ,. .. , zn points in D   and 1 , 2 , ... , n 

complex numbers, then, see [10] 

 n (f  (z  ) − f (z )) n 
1 − 

 
 

 Re   log k j   −    log 
f (z j ) f (zk )  

, (4)
 

  j    k 

 j ,k =1 zk   − z j 
j    k 

 j ,k =1 

 
1 − z 

 

 
j zk  

 

With equality possible only if f maps D onto D slit along a system of arcs 

 = (t) satisfying 
 

Re
 n 

 log ( − f (z )) −  log (1 − )
 

= 0 
 

  

 k 

 k =1 

k k f (zk )  . 
 

 

Now, we begin with the f-part of the equality statement. Note that for fixed 

 (0,1] and fixed c − 2,2 the equation 
 

K
c 
(P , c (z)) =  K (z) , z  D , (5) 

 

Where Kc (z) = 
z 

 
 

(1+ z + z 2 ) 

 

, and c is constant complex number. 

c 
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z − z 

1 − z 2 

1- z 2 Kc
 (z) 

Kc
 (P , c (z)) 

P (z) − P  , c  , c 
(z) 1 − z 2 

z − z 1 − P 2 (z)  ,c 

c 

 

 

define a conformal map P , c : D → D , which maps D onto D slit along two 
 

(possibly degenerate) segments (−1, l ,c ] and [ r ,c ,1) on the real axis. By 
 

construction, the points l ,c [−1,0) 
 

and r ,c  (0,1] 
 

can be arbitrarily prescribed 

by varying  and c . The hyperbolic derivative of P , c 

 

is given by 
 

D
D 

P , c (z) =   
1 − P , c 

 

 

2 

(z) 

 
. (6) 

 

Subtracting (5) for z from (5) for z , using P , c (z) = P , c (z) and 

 

 

 
yield 

Kc (z) − Kc 

 

(z) = (1 − z 2 ) K  (z) , 

1 − z 2 P (z) − 
         , c 

P , c 
(z) 

=   .
 

2 
 ,c (z) z − z 1 − P ,c 

2 

(z) 

Combining this and (6) gives 

 

D
D 

P , c (z) = D
D 

P , c (z) = 
 

 
  

 

tanh d D (P , c (z), P , c (z)) 

=
   

tanh( d D (z, z)) 

 
. (7) 

 

Consequently, the equality holds in (3) for f = P , c and z = z2 . Now if   f 

maps D conformally onto D slit along two hyperbolic rays on the hyperbolic 

geodesic  which is perpendicular to the hyperbolic geodesic joining f (z1 ) and 

f (z2 ) such that f (z1 ) and f (z2 ) are symmetric with respect to  , then it is easy 

to see that f = S ∘ P ,c ∘ T for some  (0,1] and c − 2,2, where S and T are 

1 − z 2 Kc
 (z) 

Kc
 (P , c (z)) 

1 − P 
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1 − z 
2 

1 

1 − f (z ) 
2 

1 

1 − z 
2 

2 

1 − f (z ) 
2 

2 

z1 − z2 

1 − z1 z2 

DD   f (z1 ) DD f (z2 ) 

p 

p 

 
 

conformal automorphisms of D such that T (z1 ) = T (z2 ) . This proves the f-part of 

the equality statement of theorem 2.1. The distortion estimate (3) for p = 0 

follows immediately from Nehari’s inequality (4) for n = 2 , 1 = 1 ,   and 

2 = −1, this is equivalent to 
2 

f (z ) − f (z ) 
2

 

  1 2   f (z1 )  , 

that is 

1 − f (z1 ) f (z2 ) 

tanh (d D ( f (z1 ), f (z2 )))  tanh (d D (z1 , z2 )) . 

Equality is only possible if f maps D onto D slit along two hyperbolic rays on 

the hyperbolic geodesic  which is perpendicular to the hyperbolic geodesic 

joining 

to  . 

Since 

f (z1 ) and f (z2 ) , such that f (z1 ) and f (z2 ) are symmetric with respect 

( DD f (z1 ) + DD   f (z2 ) 
p )1  p 

21 p 
,
 

is an increasing function of p  0 , we deduce that only-if part of the equality 

statement and that (3) holds for every p  0 . Conversely, if f : D → D is a non- 

constant analytic function satisfying (3) for some 

argument [5] shows that f is univalent. 

Theorem 2.3 

p  0 , then the Kim-Minda 

If f : D → D is univalent, then for any two distinct points z1 , z2  D and any 

p  0 

( DD f (z1 ) + DD   f (z2 ) 
p )1  p  (2 cosh(2 p(  −  )))1  p  

 
sinh(2 )

 

sinh(2) 
. (8) 

Where  is the hyperbolic distance between z1 and z2 , and   is the hyperbolic 

distance between f (z1 ) and f (z2 ) . For p  0 the equality holds for two distinct 
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( D 
D f (z ) 1 

p 
+

 
D D f (z ) 2 p )1  p 

(2 cosh(2 p d (z , z )) ) 1 p 

D 1 2 

   2 

1 − f (z ) f (z ) 
2 

1 2 
f (z ) − 

1 f (z ) 2 

( 1 − f (z ) )( 2 
1 − f (z ) ) 2 

1 2 

1 − z z z − z 
2 2 

( 1 − z )( 
1   2 1 2 

2 
1 − z ) 2 

1 2 

  

 

 

points z1 and z2 if and only if f maps D onto D slit along a hyperbolic ray on 
 

the hyperbolic geodesic through f (z1 ) and f (z2 ) . 
 

Lemma 2.4 [9] 

 

If f is a conformal map of D , then for any 

 

 
z1 , z2  D , the expression 

 
 

 
 

, 

 

is a decreasing function for p  0 . 
 

2.5 Proof 

 
By applying (4) with 

 
 
n = 2 , 

 

1 = i , and 2 

 
 
= −i 

 

 
we get 

 

 
 

   

 f (z1 ) f (z2 )  . 
 

 

or 

sinh(2)  

 
sinh(2) , (9) 

with   = d D ( f (z1 ), f (z2 )) and  = d D (z1, z2 ) . 
 

Equality is possible only if f maps  D onto  D slit along one or two rays on 

the hyperbolic geodesic through f (z1 ) and f (z2 ) . We observe that 

 D f (z ) p + D f (z ) p 


1 p 

 D 1 D 2  
,
 

 2 cosh(2 p (  − )  

is a decreasing function for 

use the fact that: 

p  0 . This follows from lemma 2.4. Now, we have to 

DD f (z2 )  DD    f (z1 ) e −4   e  4 
(10) 

DD   f (z1 ) DD f (z2 ) 
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2 3 

 1 

For bounded univalent functions. 

Consequently, the equation (4) holds for any 

 

p  0 

 
 

and equality is only 
 

possible if f maps D onto D slit along one or two rays on the hyperbolic 

geodesic through f (z1 ) and f (z2 ) . If f is such a conformal map, then by 

replacing f by S ∘ f ∘ T with conformal automorphisms S , T of D , we may 

assume z2  = 0 , z1 = r (0,1) and f (z) = P ,c (z) for some c − 2,2. The 

calculation is a straightforward and for p  0 the expression 
 

 
c  


 

 

D  ,c 2 ( 
1 p 

)  ( ) , 
 

  2 cosh(2 p 
 

d (P (z ) , P (z ))  
D  ,c 2  ,c 1 


 sinh d D (P ,c (z2 ) , P ,c (z1 )) 

 

attains its minimal value in the interval [-2,2] only for c = 2 or c = −2 . Thus 

f (z) = P , −2 (z) or f (z) = P , 2 (z) , so f maps D onto D slit along a single ray 
 

on the real axis. Conversely, if f (z) = P , −2 (z) or f (z) = P , 2 (z) , then the 
 

equality holds in equation (8) for 

statement of theorem 2.3. 

 
2. Remarks 

z2  = 0 and z1 (0,1) . This proves the equality 

 
 

 

(a) A quick proof of (10) runs as follows: 

We may assume z1  = 0 , z2 = z , f (0) = 0 and f (z)  0 . Then 

 

g(z) = 

 
belongs to the set of functions 

1 
 

 

f (0) 
 
(1 − 

f (z) 

f (z))2 
,
 

g(z) = z + a z 2 + a z 3 + ......... , 

so g (z)  (1 + z ) (1 − z  )3
 

D P (z ) 
p 

+
 

DD P ,c (z1 ) 
p 
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  

1 p  e ρ + 1
2 

 cosh(  2) 
2

 

  

p 

 

 

which is equivalent to 
   

 
(1 − 

 
f (z))3 

f (z) f (0) 
1 + f (z) 

(1 −  f (z) )3
 

 

 
Thus 

= f (0) 

 
 f (z) 

1 +  f (z) 
. 

 
 
1 − f (z)  

2  

1 + 

 

 
z 

2

 

D f (z) = (1 −   z  )2       
 f (0)     

D 1 − f (z) 2 
 1 + f (z)    1 −  z   

 

 

which proves (10). 

= DD f (0) exp(−4d D ( f (z), f (0)))  exp(4d D (z,0)) 

 

(b) We notice that Jenkins [4], gave an estimate of the form 
 

( D f (z ) p + D f (z ) p )       
 

  D 1 D 2 e2ρ + 1  e ρ + 1   cosh( 2)  
    

for any conformal map f : D → D and any p  0 . Unfortunately, this formula is not 

quite correct [12]. It has to be replaced by 

sinh (2d D ( f (z1 ), f (z2 )))  ( DD f (z1 ) + DD   f (z2 ) 

× 

p )1  p 

sinh (2d D (z1, z2 )) 
. (11) 

Equality occurs for fixed p  0 if and only if f maps D   onto D   slit along 

symmetric rays on the hyperbolic geodesic through f (z1 ) and f (z2 ) . The 

distortion estimate (11) for p  0 follows immediately from (9) by monotonicity. 

The discussion of the case of equality is similar to the Euclidean case (see [2], 

preprint) and will be omitted. 

(c) As in the Euclidean case (see [2]) the one-parameter family (8) of distortion 

estimates can be deduced from the inequalities (8) for p = 0  or p = − 

1 + z 

(1 −   z  )3
 

1 + z 

(1 −   z  )3
 

21 p 

e2ρ + 1 
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 

 

 

 

1 

combined with a monotonicity argument. For this case, as indicated in the above 

proof of theorem 2.3, it remains to show that the inequality (10) can be derived 

from (8) for p = −. 
 

If we set z1  = z , z2  = 0 and assume f (0) = 0 , then (8) for p = − takes the form 

1 − z 2   1 −  z 
2

 

min f (z)  , 
 

 

f (0)     . 

1 − f (z) 1 − f (z)   
 

This is a well-known estimate for normalized bounded univalent functions due to 

Robinson [12]. Now, from 

 1 −  z 
2

 

f (0)     , 

 

So, we immediately obtain for 

1 − f (z)   

g(z) = a1z + a2 

Pick’s coefficient inequality [10]. i.e.; 

z 2 + a z3 + ..... 

a2      2 a1 (1 − a ) . 
 

If f : D → D is not necessarily a normalized bounded function, then 

 

for 

g  (0)  4 g (0) (1 − 

  + z  

g (0) ) 

f   − 1 + z 
 

 

f (z) 

g( ) =
   

, 
  + z  

1 − f (z) f   1 + z 
  

where z is a fixed point in D 

this is equivalent to 

f  (z)(1 − z 
2 

− 

 

  2zf (z)   

 

 
+ 2 f (z) 

1 − f (z) 2 1 − f (z) 2 

2 

3 

) 

f (z) 

 z  

 

f (z) 

 z  

 

 f (z)2 (1 − z 2 ) 
(1 −  f (z) 2 )2
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4 f (z) 
 

 

     

2 log  log  

 

 

 
 

 
 1 − f (z) (1 − z 2 ) 

. 

1 − f (z) 2  1 − f (z) 2  

By integrating the right hand side of the last inequality from 0 to z we get 

 

log
 f (z) 

+ log(1 − z 2 )− 2 log(1 − f (z) 2 )  1 + z  
+

  1 − f (z)  , 
f (0) 1 − z  1 + f (z) 3  

 
and by exponentiation we finally obtain 

    

 

f (z)  1 − z 2  1 + z 
2 
1 − f (z) 

2

 

         . 

f (0) 1 − f (z) 2  
1 −  1 + f (z)  

 

 

3. Conclusion  

From this paper, we come up with the following conclusion. Two theorems concurring 

the distortion in conformal mapping in hyperbolic geometry have been proved. The 

publishers in the last years used different approaches in their proofs of these kind of 

theorems, like: ((1)) the differential geometric methods, ((2)) the general coefficient 

theorem, and ((3)) the control theory. In this paper, we prove those theorems by using 

new teenics not used before, that is, we used what so called Nehari-type inequalities. The 

results which us came up with ore those inequalities in our paper which are indicated by 

numbers (3) and (8). 
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