Some Properties Preserved by Cleavability

Hassan K. Alzoghdani¹, Aghziel.E.M. Jellala^{2*}, Saliema .F.R.Hussain³

¹Science Faculty, Tripoli University, Tripoli, Libya

² Education Faculty-Aljufra, Sirte University, Aljufra, Libya;

³ Science Faculty, Sirte University, Sirte, Libya

gjellala@yahoo.com

Abstract

In 1985 Arhangl' Skii introduced different types of cleavability as following :

A topological space X is said to be cleavable over a class of spaces \mathcal{P} if for $A \subset X$ there exists a continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(A) = A$, f(X)=Y.

We study the case :

If \mathcal{P} is a class of topological spaces with certain properties and if X is cleavable over \mathcal{P} then $X \in \mathcal{P}$

Keywords: Cleavability, Compact Spaces

1. Preliminaries:

Definition(1) [1]A topological space \dot{X} said to be pointwise cleavable over a class of spaces \mathcal{P} if for any $x \in X$ there exists a continuous mapping $f: X \to Y$ such that $f^{-1}f(x) = \{x\}$.

Definition(2) [1] A topological space X said to be absolutely cleavable over a class of spaces \mathcal{P} if $A \subset X$ and there exists an injective continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(A) = A$.

Definition(3) [2] A topological space X is said to be double cleavable over a class of spaces \mathcal{P} if for any $A \subset X$ and $B \subset X$ there exists a continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(A)=A$ and $f^{-1}f(B)=B$.

Definition(4) [3] A topological space X is said to be completely Hausdorff space if for every two distinct points x and y there are two disjoint open sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Definition(5) [3] A topological space X is said to be perfectly normal if and only if it is normal and each closed set in it is $G_{\delta} - set$.

Remark (1) By an open [closed, perfect ,....] point wise cleavable we mean that the continuous function $f: X \to Y$ is an injective open [closed perfect ,] respectively.

Proposition (1) Let X be a pointwise cleavable space over a class of

(T₀,T₁,T₂-spaces) \mathcal{P} , then X is (T₀,T₁, \mathcal{T} -spaces) respectively.

We consider only the case of T₀-space , if *X* is a point wise cleavable space over a class of T₀-spaces ,then $X \in \mathcal{P}$,

Proof: Let $x \in X$, then there exist a T₀-space $Y \in \mathcal{P}$, and a continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in Y$ with $x \neq y$, we have $f(x) \neq f(y)$, since Y is T₀-space, so there exists an open set G in Y contains one of the two points but not the other, let $f(x_1) \in G$, $f(y) \notin G$, then $f^{-1}f(x) \in f^{-1}(G)$, $f^{-1}f(y) \notin f^{-1}(G)$, since f is continuous, then $f^{-1}(G)$ is an open set in X. Hence X is T₀-space

Proposition (2) Let X be a closed pointwise cleavable space over a class of completely Hausdorff spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: Let $x \in X$, then there exist a completely Hausdorff space $Y \in \mathcal{P}$ and a closed continuous mapping $f:X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in X$ with $x \neq y$, we have $f(x) \neq f(y)$. Since Y is completely Hausdorff, so there exist open sets G, H such that $f(x) \in G$, $f(y) \in H$ and $cl(G) \cap cl(H) = \emptyset$, then $f^{-1}f(x) \in f^{-1}(G)$ and $f^{-1}f(y) \in f^{-1}(H)$, this implies that $x \in f^{-1}(G)$, $y \in f^{-1}(H)$, since f is continuous, then $f^{-1}(G)$, $f^{-1}(H)$ are open sets of X and $cl(f^{-1}(G)) \cap cl(f^{-1}(H)) \subseteq f^{-1}(cl(G)) \cap f^{-1}(cl(H)) = f^{-1}(cl(G) \cap cl(H)) = f^{1}(\emptyset) = \emptyset$. Hence X is completely Hausdorff.

Proposition (3) Let *X* be a closed absolutely cleavable space over a class of regular spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: Let x be any point in X, and a closed subset F of X, with $x \notin F$, since X is absolutely cleavable, there exists an injective continuous mapping $f:X \to Y \in \mathcal{P}$, such that $f^{-1}f(F)=F$, and for every $y \in Y$ there exists $x \in X$ such that $y \notin (x) \Rightarrow f^{4}(y)=x$, then f(F) is closed subset of Y and $f(x) \notin f(F)$, since Y is regular, so there exist two open sets G and H of Y with $f(x) \in G$, $f(F) \subset H$, $G \cap H = \emptyset$, then $x \in f^{-1}(G)$, $f^{-1}(F) \subset f^{-1}(H)$, this implies that $x \in f^{-1}(G)$, $F \subset f^{-1}(H)$, since f is continuous, then $f^{-1}(G)$, $f^{-1}(G)$, $f^{-1}(H)$ are open sets of X, and $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$. Hence X is regular.

Proposition(4) Let X be a closed absolutely double cleavable space over a class of normal

spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: Suppose F_1 , F_2 are two disjoint closed sets of X, then there exists an injective closed continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(F_1) = F_1$, $f^{-1}f(F_2) = F_2$, since f is closed then $f(F_1)$, $f(F_2)$ are two disjoint closed sets of Y, since Y is normal space, so

there exist two open sets U, V such that $f(F_1) \subseteq U$, $f(F_2) \subseteq V$ and $U \cap V = \emptyset$,

$$f^{-1}f(F_1) \subset f^{-1}(U), f^{-1}f(F_2) \subset f^{-1}(V), \text{this implies that } F_1 \subset f^{-1}(U), F_2 \subset f^{-1}(V), \text{ since } f \text{ is}$$

$$\text{60 susj, www.su.edu.ly/rcc} \qquad \text{Vol 4(2), 58-63, December 2014}$$

continuous, then $f^{-1}(U)$, $f^{-1}(V)$ are open sets of **X** and

 $\mathbf{f}^{-1}(\mathbf{U}) \cap \mathbf{f}^{-1}(\mathbf{V}) = \mathbf{f}^{-1}(\mathbf{U} \cap \mathbf{V}) = \mathbf{f}^{-1}(\mathbf{\emptyset}) = \mathbf{\emptyset}$. Hence **X** is normal space.

Proposition (5) Let X be a closed absolutely cleavable space over a class of perfectly

normal spaces \mathcal{P} , then $X \in \mathcal{P}$

Proof: Suppose F be a closed subset of X, then there exists an injective closed continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(F) = F$, then f(F) is closed and it is G_{\Box} -set in Y, it means that $f(F) = \bigcap_{i=1}^{\infty} G_i$, where G_i is open in Y, for each $i \in I$, so $F = f^1 f(F) = f^1(\bigcap_{i=1}^{\infty} G_i) = \bigcap_{i=1}^{\infty} f^{-1}(G_i)$. This implies that $F = \bigcap_{i=1}^{\infty} f^{-1}(G_i)$, where $f^{-1}(G)$ is open , for each $i \in I$, i-e F is a G_{\Box} -set in X. Therefore X is perfectly normal space. Proposition (6) Let X be an open absolutely double cleavable space over a class of

connected spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: Let **X** be not connected ,then $X = u_1 \cup u_2$ where u_1 and u_2 are disjoint non empty open sets in **X**, and there exists an injective open continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(u_1) = u_1$, $f^{-1}f(u_2) = u_2$, then $f(X) = f(u_1 \cup u_2) = f(u_1) \cup f(u_1)$. This implies that $Y = f(u_1) \cup f(u_2)$, then $f(u_1)$ and $f(u_2)$ are disjoint non empty open sets of **Y**

, but Y is connected space which contradicts that Y is connected. Therefore X must be connected.

Proposition (7) Let X be an open cleavable space over a class of locally connected spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: For $x \in X$, let U be a neighborhood of x, since X is open cleavable, so there exists an open continuous mapping $f : X \to Y \in \mathcal{P}$, such that $f^{-1}f(U) = U$, $f(x) \in Y$,with f(x) = y, since Y is Locally connected, so there exists a connected neighborhood V of y in Y, since f is continuous, so $f^{-1}(V)$ is a connected neighborhood of x in X,such that $x \in f^{-1}(V) \subset U$. Hence X is locally connected.

Proposition (8) Let **X** be an open absolutely cleavable space over a class of compact

spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: Suppose $\{U_i\}_{i\in I}$ be an open cover of X, since X is an open cleavable space, so there exists an injective open mapping, $f: X \to Y \in \mathcal{P}$, such that $f^1 f$ $\{U_i\}_{i\in I} = \{U_i\}_{i\in I}$, then $\{f(U_i)\}_{i\in I}$ is an open cover of Y, since Y is compact so there exists $I_0 \subseteq I$ such that $\{f(U_i)\}_{i\in I}$ is a finite sub cover of Y, then $\{f^{-1}f(U_i)\}_{i\in I}$

is open for each $i \in I_0$, i.e. $\{f^{(i)}(f(U_i))\}_{i \in I_0}$ is a finite sub cover of X, but $f^{(i)}(f(U_i))\}_{i \in I_0}$

 $U_i = U_i$ for each $i \in I$, so $\{U_i\}_{i \in I_0}$ is a finite sub cover of **X**. Hence **X** is compact.

Proposition (9) Let X be a perfect cleavable space over a class of locally compact spaces \mathcal{P} , then $X \in \mathcal{P}$.

Proof: Let U be a closed neighborhood of $x \in X$, since X is a perfect cleavable space , so there exists a closed continuous mapping $f : X \to Y \in \mathcal{P}$, such that $f^{-1}f(U)=U$, for any point y in Y, $f(x)=y \Leftrightarrow x=f^{-1}(y)$, since f is continuous and closed so f (U is a closed neighborhood of y in Y, but Y is locally compact, so f U is compact neighborhood of y, since f is perfect, so $f^{-1}f(U) = U$ is compact closed neighborhood of x in X. Hence X is locally compact.

2. References

- [1] Arhangel'skii, A.V and Cammaroto , On different types of cleavability of topological spaces , pointwise, closed , open and pseudo open , Journal of Australian Math, Soc. (1992).
- [2] Arhangel'skii, A.V and Cammaroto, F., On cleavability and hereditary properties Houston journal of Mathematics ,20,(1994) .
- [3] Cammaroto, F and Lj, Kocinac, Developable spaces and cleavability Rediconti di Mathematica, serie VII, vol,15, Roma (1995), 647-663.
- [4] Cammaroto.F., Cleavability and divisibility over developable spaces. Comment. Math.Univ. ,Carolina 37,4 (1996) 791-796.