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Abstract 

The weak singularity issue arises in the boundary integral equations either directly or as a result 
of reducing the hypersingularity to at worst weak singularity by using some regularization formulae. 
Here we show some analytic and numerical techniques to deal with the weak singularity 
phenomenon of the boundary integral equations.  These powerful techniques include the logarithmic 
Gaussian quadrature, subtraction of singularity and coordinate transformations that are formulated 
in such a way that the singularity is removed. 
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1. Introduction 
 

Boundary Element Method (BEM) is a powerful technique for obtaining an approximate 

solution for Partial Differential Equations (PDEs) that arise in scientific and engineering 

applications, such as elastodynamics, fluid dynamics, wave scattering, radiation and 

propagation. BEM is now a very well established and well documented technique; see 

Banerjee and Watson [1, 2 ], Brebbia [3, 4, 5, 6, 7, 8, 9] for an introduction and 

applications. Within the BEM the governing PDE can be transformed into an equivalent 

system of boundary integral equations (BIEs) directly through Green's second identity [10]. 

For a rigorous mathematical insight into BIEs theories and their abstract formulation using 

functional analysis see Atkinson [11], Mikhlin [12], Kress [13], Colton [14] and Hackbusch 

[15]. The mechanism of the BEM is to discretize the boundary into a number of elements to 
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compute the integrals numerically over such elements. Thus the system of BIEs is 

converted into a linear system of algebraic equations which can be solved numerically. The 

implementation of the BEM is reliant on the accurate evaluation of boundary integrals. 

Owing to the use of the two-point (source and receiver) singular fundamental solution, the 

boundary integral formulations suffer from singularities. These integrals are dependent on 

the distance between the source point and receiver point  which varies in value as 

the integrals are taken around the boundary. If the distance  then the kernel of the 

BIE is regular, but if  then the BIEs exhibit singularities whose order is dependent on 

the type of kernel. Thus the general implementation of the BEM requires the computation 

of singular integrals with various types of singularities, such as weakly, strongly, and 

hypersingular of the order  and , respectively. Accurate and efficient 

computations of such integrals have made the BEM an efficient and generally well-

conditioned numerical solution procedures. A great deal of research has been devoted to 

various ways of dealing with the singularity. Sladek and Sladek [16] gave a survey on the 

treatment of all types of singularities. There are several techniques to evaluate various types 

of singularities. In principle, there are two directions for regularization that are discussed in 

the literature. The first aims to remove all the non-integrable singularities analytically 

before any discretization is performed; such an analytic regularization is not entirely 

general and may be limited to certain problems. In contrast, the regularizations after 

discretization analyse each individual integrals by cancelling the divergent terms globally 

using a Galerkin or collocation formulation [16, 17]. This approach heavily requires the 

smoothness of the boundary [17]. The most widely used technique for regularization is the 

conversion of the hypersingular integral into a Cauchy Principal Value (CPV) integral. 

Hornberger et al. [18] implemented the BEM for two-dimensional magnetic billiards; they 

express the hypersingular operator as a special limit similar to the CPV integral. Then they 

use the asymptotic expression of the free-space Green function. 

Krisnasamy et al. [19] dealt with the hypersingularity for the acoustic wave scattering in 

three dimensions. Their method is free of any discretization assumption; it demands only 

sufficient smoothness on the density function of the hypersingular function at the 
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singularity point for the Taylor series expansion to be applied. Then a conversion by 

Stokes's theorem is carried out to reduce the order of the singularity by converting the 

surface integrals into line integrals. They used a regularization relationship, which reduces 

the hypersingularity to a weak singularity. 

Some approaches [20, 21] represent the hypersingular integrals in terms of the Hadamard 

finite-part [22]. For instance, Bose [22] regularized the hypersingular integral that arises 

from acoustic scattering problem in two and three dimensions by using the Hadamard 

finite-part representation. Most of the techniques developed for regularization reduce the 

singularity to at worst weakly singular, or a complete regularization such as the singularity-

free formula that is derived in [23]. Kutt [24, 25] developed a numerical approach to 

evaluate one-dimensional hypersingular integrals in finite part representation using 

Gaussian quadrature.  

Here in this paper we outline some powerful methods to deal with the weak singularity. The 

focus will be on weakly singular integrals, so we will demonstrate these methods 

specifically to this type of integrals, though most of the presented methods below can be 

applied successfully for a higher order of singularity. These include the logarithmic 

Gaussian quadrature, subtraction of the singularity, and suitable variable transformations 

such as the Tanh rule and Telles transformation. 

 

2. Logarithmic Gaussian Quadrature 
 

A simple way to numerically approximate a regular (non-singular) integral is the standard 

Gaussian quadrature (GQ). In one-dimension it can be implemented as, 

                                                     (1)   

where  and  are the Gaussian quadrature points and the associated weighting 

functions, respectively, and  is the number of integration points. The integration range for 

the standard GQ is from  and . Thus one may need a linear transformation to 

accommodate general integration limits from to , as follows, 
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GQ evaluates the integrand at a given number of points called the Gaussian coordinates, 

then the function is multiplied by a weight function and the sum is taken to approximate the 

integral. A large number of Gaussian points leads to a better accuracy. The standard GQ is 

not sufficiently accurate for weakly singular (logarithmic) integrals, even with a large 

number of Gaussian points. The logarithmic Gaussian quadrature is designed to treat such 

integrals. This evaluates the integral of a function  over the range from 0 and 1 

numerically as, 

,                                             (2)   

where the  and  are the logarithmic Gaussian quadrature points and the associated 

weighting functions, respectively.  It is noteworthy to mention that the integral is taken over 

the limits from 0 to 1. Therefore, one needs to do a linear transformation in order to 

accommodate general limits. We should emphasise that, for logarithmic Gaussian 

quadrature the Gaussian points and weighting functions are different from those for the 

standard Gaussian quadrature. The Gaussian quadrature points and the associated weighting 

functions for standard and logarithmic GQ for different values of  are tabulated in the 

textbook by Stroud and Secrest [26], and can also be found in [27]. 

 Next, we will present another approach of regularization where one can subtract the 

singular part, and then evaluate the reminder (non-singular term) using Gaussian type 

quadrature whereas the singular part is integrated using analytic integration formula. 

                                                                                                                                                                                                                                                                                                                                                                                        

3.  Singularity Subtractions  

In principle, this technique can be used to evaluate all type of singular integrals [28]. The 

core idea of this technique is to remove the singular terms from the singular integrand 

leaving a regular integrand that can be integrated using standard Gaussian quadrature. Then 

the singular terms is included back in by an additional singular integral which can be 

computed analytically. 
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Here we will demonstrate the subtraction of singularity technique for weakly singular 

integral, though it can be used even for hypersingular integrals [29, 30]. 

Example: Within the BEM formulation for the Helmholtz equation, it is often to encounter 

the logarithmic singularity which requires a regularization. Such a logarithmic singularity 

comes from the integral of the free-space Green function which is defined as, 

 

where is the Hankel function of zeroth order [31] defined as, 

 

 

 

 and  are the Bessel functions of the first and second kinds  

respectively, and defined as, 

 

and, 

 

where            and           

 

The integral of becomes logarithmically singular when  and  are in the 

same boundary element. This weak singularity can be treated by expanding the Hankel 

function and integrating out the logarithmically divergent term explicitly as, 

 (3) 

This integral is weakly singular when   The first integral in the right hand side 

of equation (3) is regular and can be integrated numerically using standard Gaussian 
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quadrature. However, the second integral in the right hand side of equation (3) can be 

integrated analytically using the formula, 

 

Thus, we have demonstrated that the Singularity subtraction procedure can be very useful 

in treating the weakly singular integrals. Next, we will discuss another approach for 

regularization that is based on a suitable coordinate transformation whose Jacobian 

smoothens out the singularity. 

 

4.  Coordinate Transformations 
 

One of the best known coordinate transformations for treating weak singularities is 

attributed to Telles [32]. It is an elegant and simple way to deal with singular and nearly 

singular integrals. This transformation is performed in such a way that its Jacobian weakens 

or cancels out the singularity. Then the resulting integral can be evaluated by standard 

Gaussian type quadrature, such as Gauss-Legendre quadrature [27]. This transformation 

will be presented below where we will present some formulae. 

Another efficient transformation to deal with weakly singular integrals is the tanh rule [33, 

34, 35]. It works in such a way that the Jacobian decreases rapidly at the endpoints of the 

integration limits as described next.  Furthermore, Hayami [36, 37] developed another 

transformation which needs to be implemented in polar coordinates. 

3.1 Tanh Rule 

This rule requires dividing the integral into a sum of two integrals at the singularity point 

as, 

 

where the integrand  has a singularity at  or . The core idea of this rule is that if the 

singular integrand does not vanish on the endpoints of the integral, then one needs to think 

of a transformation that ignores the endpoints singularity completely . 
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Therefore, we choose the transformation such that the factor   decreases rapidly 

(goes to zero) at the endpoints of the interval. Then a simple trapezoidal rule can be used to 

evaluate the non-singular integral giving extremely accurate results. Tanh Rule was 

introduced by Schwartz [34] and has become known as the Tanh rule; it is based on the 

following variable transformation, 

                                                     (4) 

where, 

 

so, 

 

Clearly, one can see that the factor  vanishes at the singularity point  

or  which corresponds to the factor , which vanishes as . So the 

integral (4) is transformed to the following non-singular integral, 

 

                       (5) 

One can notice that the term  decreases sharply as  , this explains the 

efficiency of this technique. Since the term  as , we can truncate the 

integral (5) at the values , hence one obtains the following non-singular integral 

which can be computed using Gaussian quadrature scheme, 

 

So we truncate the infinite limits of the integral to a finite value of , this leads to a 

trimming error. However the larger value of  , the smaller trimming error will be. 
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Schwartz [36] gives an estimate of the trimming and the discretization errors. 

Next we will discuss the best known coordinate transformations and we will present some 

formulae and illustrative examples. 

3.2 Telles' Transformation 

The Telles transformation [32] is a popular variable transformation method to treat the 

weakly singular integral. It was originally designed to compute one-dimensional integrals 

with a logarithmic singularity. The Jacobian of such transformation merely weakens or 

cancels out the singularity. This approach uses a quadratic or cubic variable transformation, 

depending on whether the singular point is lying at the end of the element (integration 

domain) or within the element, respectively. Consider the integral, 

 

where  is a weakly singular function at one of the extremities of the integral. This 

means that the singularity point satisfies the condition . We can use the 

following quadratic transformation for the integral I, 

 

                                          (6)                                          

where  is the new coordinate variable. The key point is that the Jacobian of the 

transformation vanishes at the singularity point . Thus this transformation 

cancels out the singularity and produces a regular integral. Then the resulting non-singular 

integral can be evaluated numerically by standard Gaussian quadrature schemes. To 

demonstrate the efficiency of Telles’ transformation, we give the following examples. 

Example 1: Evaluate the following integral: 

 

This integral is weakly singular at the point  as shown in figure 1(a), so the integrand 

needs regularization. Thus by using Telles’ transformation given by equation (6) where we 
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substitute the singularity point , this logarithmically singular integral can be 

transformed to, 

 

This regular integral can be computed by using the standard Gaussian quadrature given by 

equation (1). So one can sees that the weakly singular integrand   is regularized 

and the singularity is removed by the Jacobian as shown in figure 1(b). 

 

(a) Weakly singular integrand f( )=ln (1- ) 

 

(b)  Regularized integrand  

Figure 1  Regularization of the weakly singular integrand  f( )=ln (1- )  by Telles’ 

transformation which transforms the integrand to  

 

If the singularity point satisfies the condition , then one needs to partition the 

integral into two integrals at the singularity point and then employ the transformation (6) 
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for each integral. However, Telles introduced another cubic transformation for the case that 

the singularity point lays within the element, that is . Hence one needs to use the 

following non-linear transformation, 

                               (7) 

where  is given as 

 

and  is given as 

 

To demonstrate the efficiency of the cubic transformation, we give the following example. 

 Example 2: Evaluate the following integral: 

 

This integral is weakly singular at the point  which is located within the integration 

range, so one needs to use the cubic transformation (7) where  as follows, 

  

So the integral can be expressed as, 

 

Therefore, one can easily notice that the Jacobian  cancels the singularity and vanishes at 

the singularity point . Then the resulting regular integral can be computed using 

Gaussian quadrature. It is noteworthy to mention that Telles’ transformation concentrates 

the Gauss points around the singularity point leading to a high accuracy with less number 

of Gauss points [32]. This makes Telles’ transformation a very efficient technique to treat 

the weak singularity. 
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5. Conclusion 
 

To summarize, we have shown some powerful techniques to treat weakly singular integrals, 

though some of them can also be used to treat higher order of singularity. Some of these 

techniques are numerical such as quadrature schemes which use certain integration points 

and weights that account for the singularity. The others are analytic such as the subtraction 

of singularity and the coordinate’s transformation, however the analytic methods need 

sometimes to be followed by quadrature schemes to improve the accuracy. We have shown 

some examples confirming the efficiency of these techniques.  As it has been addressed in 

section (2), the logarithmically singular integral can be evaluated using the logarithmic 

Gaussian quadrature. Nevertheless, using Telles’ transformation first, and then using the 

Gaussian quadrature greatly improves the accuracy and gives better results than logarithmic 

Gaussian quadrature [32].  
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