
Abdalsalam M. Muftah and Marte Gutierrez 

Vol.7(2),76–97, December2017 76 

 

 

Sirte University Scientific Journal(Applied Sciences)                                                        Vol.7(2),76–97,December2017 

 
Modeling of Bifurcation and Post-Bifurcation 

Response of Granular Materials: Insights From 

Discrete Element Modeling 
 

Abdalsalam M. Muftah
1
* and Marte Gutierrez

2 

e-mail: salamgader@su.edu.ly 

 
1
Sirte University/Faculty of Engineering (SU), Libya 

2
Colorado School of Mines/Division of Engineering (CSM), USA 

 

 

 

Abstract 

A softening elastoplasticity model for sand has been constructed and its mathematical derivations are 

described in this paper. The proposed model is based on the concept of a non-associated elastoplastic 

material description. The model first was coupled with a strain hardening plasticity model, as developed by 

Gutierrez 2010 [1], for granular soil before the bifurcation point. The softening elastoplasticity model then 

develops a tangential stiffness matrix which plays a crucial role in describing the softening behavior. The 

smeared shear band model proposed by Pietruszczak and Mroz 1981 [2] is employed in this model to 

incorporate a characteristic length dimension (i.e. shear band thickness). The objectivity of the constitutive 

model has been established from the form-invariance principal. The plastic module in terms of stress and 

strain-increments is provided for simulating stress and strain-controlled biaxial tests. The results of a study 

of RF-Huston sand and of DEM simulation served as a basis for evaluating the capabilities of the model. The 

results indicate that, the softening elastoplasticity model accurately depicts the trends observed in the 

experimental data of RF-Hostun and the DEM sand simulation. 

Keywords:hardening plasticity, smeared shear band,  StrainLocalization, non-associated flow rule, 

Prager’s consistency condition, Noncoaxiality, Stress rotations  

 

1. Introduction 
 

When a granular structure is subjected to external loading, various stress or strain states occur in 

the structure. A typical deviatoric stress-axial strain behavior of frictional granular soil under 

triaxial compression condition, for example, usually consists of both strain hardening and 

softening portions. Soil shear strength increases (hardens) initially and then decreases (softens) 

after the deviatoric stress reaches a peak value or a bifurcation point. The development of 

softening continues until residual state is reached (Fig. 1). The soil hardening and softening 
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behaviors are modeled by an isotropic increase and decrease of yield surface which is governed by 

different theories as the elastoplasticity.  

 

The topic of strain-softening has recently attracted extensive research because efforts to model the 

failure of granular soils are inevitably linked with stress-strain curves. The earliest such work 

focused on the stability of earth structures due to the importance of strain softening in these 

systems [3,4,5,6,7]. A number of works have been published recently, which focus on various 

aspects of strain softening analysis considering stability of bifurcation for granular soil materials. 

[8,9,10]. The post localization model describes the strain softening response that follows the onset 

of strain localization. In these cases, strain softening is usually beyond the bifurcation point in 

which the material develops large strain that eventually lead to failure. In the post localization 

regime we deal in general with the most difficult aspect of granular behavior and mathematical 

challenges in modeling the post localization phase. This complexity of behavior can be interpreted 

due to the formation of a shear band. Once the shear band is formed, the constitutive response of 

the particulate system is dominated by what happens inside the band. The mechanical response of 

the shear band affects the response of intact systems during continued increase in deformation 

[7,11].  

 

Softening in terms of elastoplasticity theory means a contraction of the yield surface as a result of 

which the loading surface softens (decreases in size). The totality of plastic states bounding the 

elastic range, defines a yield surface. The elastic stress increments are related to strain increments 

by Hook’s law (Eq. 9). Plastic stress increments can be determined by the corresponding plastic 

strain increments by updating the loading condition. In this scenario, the loading from one plastic 

state leads to another plastic state on the stress path. This condition is called the consistency 

condition [12,13].  

 

Numerous numerical studies have been performed to simulate the post localization regime. In the 

mathematical sense, the cause of these problems is the fact that the partial differential equation 

changes type in the transition from hardening to softening, so that the boundary value becomes 

imaginary [14,15]. Finite element simulation of post localization response has a number of 

limitations such as the predicted load carrying capacity exhibits strong mesh dependency, and the 

shear band thickness approaches zero as the mesh is continuously refined [2,16]. These results are 

in contradiction with experimental data, which indicate a finite width for the localization zone. 

Strain softening effects are also often observed in conventional laboratory biaxial tests for a dense 

granular material[17,19]. After a stress state reaches the peak surface, the response of stress-strain 

switches from a hardening relation to a softening state. Such softening involves a reduction of the 

friction angle and increase of plastic work which causes the deflation of the yield surface. In 

enhanced continuum theory, including Casseret continuum theory, gradient plasticity and non-
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local constitutive models have been proposed to introduce a length scale into the constitutive 

relation to define the microstructure of material undergoing inhomogeneous deformation [16,20].  

The objective of this part of the study is to investigate the post localization response of dilatants on 

the granular system without routing those difficult approaches which use enhanced continuum 

theories. This approach assumes that once the shear band is formed, all deformation occurs inside 

the shear band. It assumed that elastic deformations inside the shear band are negligible as 

compared to plastic deformations. The strain softening behavior, which is accompanied by 

localization of deformation inside the shear band, does not represent a characteristic  of material 

element, since the homogeneity of strain is lost with the onset of shear hardening. The loading 

function for such a material will in general decrease in size with further straining.  

 

 This study focuses on softening elastoplasticity models enhanced by incremental formulation of 

internal variables, such as friction and dilatancy angles. The aim of this study is to find an 

elastoplasticity model for strain softening materials that acts as a localization descriptor, both for 

localization due to softening and due to non-associated plastic flow. We are more interested in the 

strain softening inside the shear band. Softening was accompanied by shear banding in the 

majority of the biaxial compression tests. The occurrence of banding softening, instead of material 

softening was reported by [10]. Wanatowski et al. state that strain softening inside the shear band 

is crucial for the development of a shear band system. A number of different mechanisms can be 

responsible for decreases in shear strength at soil when granular soil reaches peak strength, for 

example, negative stress increments may develop and its strength drops down to some limiting or 

residual value. The phenomenon when stress decreases with an increase in strain is generally 

called “strain softening”, during which a main  characteristic is that the tangent modulus becomes 

negative [2,21]. During plastic loading in the softening region, the stresses decreases in value 

causing contraction of the stress yield surface. 

 

 In this paper, two different model components are discussed in order to construct a softening 

elastoplasticity model. The first component is a hardening plasticity model [1] for simulating the 

granular soil behavior prior to reaching the bifurcation point. As soon as the bifurcation point is 

reached the hardening model is replaced by a softening model. The second component is an 

elastic-plastic constitutive model with strain softening to simulate the strain softening behavior 

beyond the bifurcation point. The later component is in the form of the so-called smeared shear 

band [2].  

 

2. Review of Hardening Plasticity Model 
 

For strain hardening material, the yield surface must change in some way so that an increase in 

stress is necessary to induce further plastic deformation. Several hardening rules have been 

proposed in the past for use in plastic analysis. A complete strain hardening model based on 
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simple constitutive formulation of the response of the sand is constructed [1]. The elastoplastic 

constitutive model for a biaxial loading condition is introduced, which adequately captures the 

monotonic response of granular soils until the bifurcation point is reached, particularly the 

variation of the mobilized friction and the dilatancy with shear deformation. This model has the 

following components:  

 

1. The yielding function 𝑓(𝑠, 𝑡, ∅) in spirit of the Mohr-coulomb yield criterion given by 𝑓 = 𝑡 +

𝑠𝑠𝑖𝑛∅   and 𝑠𝑖𝑛∅ as the hardening parameter.  

 

2. The friction and dilation angles in granular soil are varies with shear deformation. The strain 

hardening function is based on a hyperbolic relation between 𝑠𝑖𝑛∅ and plastic strain𝛾𝑝. The 

plastic potential function 𝑔(𝑠, 𝑡, 𝜑)is derived from the stress-dilatancy relation. 

 

3. Elastic shear strain can be calculated using the value of Poisson’s ratio 𝜈 and the shear modulus.  

 

          Based on these definitions, the hardening parameter ℎ can be derived 

 

ℎ =
𝑠𝑠𝑖𝑛∅𝑝

𝐴
(1 −

𝑠𝑖𝑛∅

𝑠𝑖𝑛∅𝑝
)2                                                                                (1) 

 

The friction angle 𝑠𝑖𝑛∅𝐵 and the corresponding shear strain 𝛾𝐵 at the point of bifurcation are 

obtained in this model 

𝑠𝑖𝑛∅𝐵 = 𝑠𝑖𝑛∅𝑝(1 − 𝑠𝑖𝑛∅𝑐√
1

8(1 − 𝜈)𝑆𝐵

𝐺

𝐺𝐵
)𝛾𝐵 =

𝐴𝑠𝑖𝑛∅𝐵
𝑠𝑖𝑛∅𝑝 − 𝑠𝑖𝑛∅𝐵

           (2) 

 

The constitutive model predictions are compared against experimental data. The demonstration is 

performed for two densities (loose and dense) of RF-Hostun sand. Data for RF-Hostun sand was 

used to compare the stress-strain response of experimental biaxial tests with the response of the 

constitutive model until the bifurcation point achieved. The results for loose and dense RF-Hostun 

sand were first performed isotropically consolidation at initial mean stress of   𝑆𝑜=100, 200, 400 

and 800𝐾𝑃𝑎. The samples were then sheared under 𝜎3-constant condition. The model and 

experimental results show good agreement and consistency until the bifurcation point is reached. 

After the bifurcation point, the predicted stress-strain curve, which assumes homogenous 

response, continues to show strain hardening and then deviates from the experimental data, which 

show strain softening. The predicted volumetric vs. shear strain curves also start to deviate from 

the experimental data after the bifurcation point. The plane strain biaxial test results for dense RF-

Hostun sands and the response using the constitutive model are shown in Fig. 2. 
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When the bifurcation point reached, the constitutive model for biaxial loading condition before 

bifurcation is no longer applicable. A precise elastoplastic constitutive model is required, which 

adequately captures the strain-softening response of granular materials particularly the variation of 

dilatancy and mobilized friction with shear deformation. In the next section, the incremental 

constitutive stiffness matrix for a granular assembly is derived by employing internal variables 

such as the thickness and the shear band, friction and dilatancy angles. The hardening model is 

based on the concept of elastoplasticity. As previously approached for granular soils by [1], the 

model will be extended to include a non-associated elastic-plastic constitutive model with strain 

softening to describe the granular soil behavior beyond the bifurcation point. 

 

 

3. Review of the Smeared Shear Band Model 
 

Many published papers have focused on various aspects of strain softening analysis, and many 

experiments have been carried out on granular sand materials with efforts to clarify the 

relationships between the strain softening behavior of sand and the formation of the shear band. It 

appears that the model of [2] has the greatest potential for studying problem post-localization, 

since it incorporates both material and geometrical components of strain softening phenomena. 

Pietruszczak and Mroz[2]developed a model of localized failure with finite element for granular 

soil, in which the plastic shear deformations are smeared within a band across the element (Fig. 3). 

It is assumed a priori that the band has thickness 𝑑 and the shear band angle α is oriented relative 

to the direction of major principal stress. The behavior of a non-cohesive material with associated 

flow rule was considered in their original work. Pietruszczak and Mroz[2]indicate that the model 

overcomes the problem of mesh sensitivity associated with the more conventional strain softening 

finite element analysis. No assessment of bifurcation is made and it is assumed that localization 

occurs when stresses reach the yield surface. 

 

The smeared shear band model takes into account the effect of a characteristic smeared band 

length, the shear band thickness, and the geometry of the specimen when evaluating the response 

of strain softening. Following the Pietruszczak and Mroz model, shear banding is introduced in the 

numerical model by a strain localization parameter 𝜂 in the additive decomposition of total strain 

increment 𝑑𝜀 into two parts in series as shown in Fig. 3, one referring to elastic  (𝑑𝜀𝑒) part outside 

shear band and one referring to plastic (𝑑𝜀𝑝) parts inside shear band as follow  

 

𝑑𝜀 = 𝑑𝜀𝑒 + 𝜂 𝑑𝜀𝑝                                                         (3) 

where  
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                              𝜂 =
𝑇ℎ𝑒𝑎𝑟𝑒𝑎𝑜𝑓𝑠ℎ𝑒𝑎𝑟𝑏𝑎𝑛𝑑 (𝐹𝑤)

𝑇ℎ𝑒𝑎𝑟𝑒𝑎𝑜𝑓𝑡ℎ𝑒𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝐹𝑒)
                             (4) 

                          𝜂 =  
𝑆ℎ𝑒𝑎𝑟 𝑏𝑎𝑛𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑑)

𝑇ℎ𝑒 ℎ𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝑎) × 𝑐𝑜𝑠 (∝)
    (5) 

 

The length scaling constant 𝜂 is a function of element size and since shear band thickness is treated 

as constant, a linear reduction in element size leads to a linear increase in 𝜂. The length scaling 

factor 𝜂 represents the geometric component of strain softening and acts to adjust the amount of 

strain softening. The constitutive relation in the form of the stress-strain relationship reported by 

[2]was obtained as. 

 

𝜎 = [𝑇] {
𝐹𝑤
𝐹𝑒

1

𝐻
[𝐶] +

1

𝐸
[𝐷]}

−1

[𝑇](𝜀)                                  (6) 

 

where 𝐻 represents the softening modulus of the shear band material, and [𝑇] represents the 

transformation matrix. The value [𝑐] represents the plastic stiffness matrix and is defined as: 

 

𝐶𝑖𝑗 =
𝑑𝑓

𝑑𝜎𝑖

𝑑𝑓

𝑑𝜎𝑗
                                                                            (7) 

 

In the next section, the incremental constitutive stiffness matrix for the element is derived by 

considering the shear band to penetrate through a constant strain element. In the proposed model 

we advocate the concept put forward in [2], which takes into account the incorporation of a 

characteristic dimension, such as the width of the shear band and the geometry of the specimen 

into the constitutive relation.  

 

4. Model Description 
 

Elastoplasticity method is a phenomenological method. Its aim is to produce mathematically 

the macroscopic relation between stress and strain tensor in a material point of the body for 

different loading conditions. Such a mathematical description is commonly named a constitutive 

model. The constitutive model developed here will be based on an elastoplasticity framework. A 

fundamental notion in the elastoplasticity theory is the existence of a yield function that bounds the 

elastic domain.To set up an elastoplasticity model, the proposed model is coupled with a strain 

hardening model as developed by [1]. The yield function 𝑓 and plastic potential function 𝑔 are of 

Mohr-coulomb type. The smeared shear band method proposed in the Pietruszczak and Mroz 

model [2]is employed to incorporate the characteristic length scale of strain localization.  
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The material is initially homogenously distributed over the sample in the post localization 

model. All boundaries of the biaxial test are smooth. The top plate and base plate of the biaxial 

setup can move independently in a horizontal direction. The post-localization model describes the 

biaxial test in two areas, one inside and one outside of the shear band. The material outside of the 

shear band is assumed to react to the applied stress in an elastic manner. The material inside of the 

shear band behaves plastically. The shear band has thickness 𝑑 and is inclined at an angle 𝛼 to the 

x-axis. It is assumed that only one shear band will develop during the biaxial tests. The stress 

components along the shear band follow the rotation of the axis with angle. The material properties 

and the material outside and inside shear band can be different. The parameters outside the band 

have the superscript 𝑒 (elastic). The parameters inside the band have the superscript 𝑝 (plastic) (see 

Fig. 4). 

 

5. Formulation of the Elastic-Plastic Constitutive Model 
 

Following the solutions proposed by Pietruszczak and Mroz model, this method takes into 

account strain localization associated with shear banding by introducing a characteristic length 

scale 𝜂 and by defining shear deformation characteristics inside shear band. These shear 

deformation characteristics are obtained by the decomposition of the total strain 𝜀 into an elastic, 

reversible part, 𝜀𝑒and a plastic, irreversible part, 𝜀𝑝 

 

𝜀 = 𝜀𝑒 + 𝜂 𝜀𝑝                                                                              (8) 

 

If considered in terms of incremental strains, the total strain increment is obtained from the 

expression in Eq. 3. 

 

The elastic strain increment is linearly related to the stress increment 𝑑𝜎 
                              𝑑𝜎 = 𝐸𝑑𝜀𝑒                                                       (9) 

 

The plastic flow within a shear band is formulated in the spirit of the Mohr-Coulomb 

elastoplasticity model with a non-associated flow rule. The plastic strain herein can be represented 

by assuming the yield function 𝑓 and plastic potential function 𝑔 as:  

 

𝑓 = 𝜏𝑛𝑡 + 𝜎𝑛𝑡𝑎𝑛𝜙  and,  𝑔 = 𝜏𝑛𝑡 + 𝜎𝑛𝑡𝑎𝑛𝜑                                                           (10) 

 

where 𝜏𝑛𝑡and 𝜎𝑛  represent the shear stress and normal stress which are usually calculated at the 

onset of bifurcation to understand the initiation of strain localization. 
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In theory, a spectral analysis can be performed at any loading steps past the initial bifurcation 

point. These post bifurcation analyses, which are difficult to interpret due to heterogeneous modes 

of deformations, are beyond the scope of this paper. Inside the shear band, the stress and strain 

components are formulated along the 𝑛 𝑎𝑛𝑑 𝑡 axis. In two dimensions, the shear stress 𝜏𝑛𝑡 and 

normal stress 𝜎𝑛 can be written in terms of the two-dimensional MIT stress invariants 𝑝 and 𝑞, 

which are equal to the coordinate of the center and the radius of Mohr’s circle of stress, 

respectively (Fig. 5): 

 

                                𝜏𝑛𝑡 = −𝑞 sin(2𝛼)                                    (11) 

 

𝜎𝑛 = 𝑝 + 𝑞 cos(2𝛼)                                                                (12) 

 

𝑝 =
1

2
(𝜎1 + 𝜎3)  𝑎𝑛𝑑  𝑞 =

1

2
(𝜎1 − 𝜎3)                                (13) 

 

where 𝜎1the major principal is stress and 𝜎3 is the minor principal stress (compression being taken 

as positive sign). Accordingly, the Mohr-Coulomb criterion for yield stress 𝑓, and plastic potential 

𝑔 become: 

 

𝑓 = −
1

2
(𝜎1 − 𝜎3) sin(2𝛼) + (

1

2
(𝜎1 + 𝜎3) +

1

2
(𝜎1 − 𝜎3) cos(2𝛼)) tan(∅)   (14) 

 

𝑔 = −
1

2
(𝜎1 − 𝜎3) sin(2𝛼) + (

1

2
(𝜎1 + 𝜎3) +

1

2
(𝜎1 − 𝜎3) cos(2𝛼)) tan(𝜑)   (15) 

 

However, unlike the Pietruszczak and Mroz model, the variation of the mobilized friction angle∅ 

and dilatancy angle𝜑 are specified in the present study. Also, it is assumed non-associated flow, 

which requires that 𝑓 and 𝑔 do not coincide. 

 

For simplicity, a strain softening function exhibits approximately linear relation between 

mobilized function angle tan∅ and plastic shear strain 𝛾13
𝑝

, and is most commonly used to define a 

softening model. The value of 𝐵 is equal to the initial slope of tan∅vs. 𝛾13
𝑝

and its value is always 

positive. So the constitutive relation for granular soils in the strain softening stage can be 

considered as a descending straight line whose absolute value of the slope is𝐵, the shear softening 

modulus.  

 

tan∅ = 𝐵𝛾13
𝑝                                                                             (16) 
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According to the theory of plasticity, the plastic strain increments are proportional to the derivative 

of the plastic potential function 𝑔 with respect to the stresses. The increment of plastic strain 𝑑𝜀𝑖𝑗
𝑝

 

for the entire assembly is   

𝑑𝜀𝑖𝑗
𝑝 = 𝜆

𝑑𝑔

𝑑𝜎𝑖𝑗
                                                                   (17) 

 

The principal strain increments 𝑑𝜀1
𝑝, 𝑑𝜀3

𝑝 
and the shear strain increment 𝑑𝛾13

𝑝
can be determined 

from Eq. 17  

 

𝑑𝜀1
𝑝 = 𝜆

𝑑𝑔

𝑑𝜎1
 ,   𝑑𝛾13

𝑝 = 𝜆
𝑑𝑔

𝑑𝜏
   𝑎𝑛𝑑  𝑑𝜀3

𝑝 = 𝜆
𝑑𝑔

𝑑𝜎3
                                        (18) 

 

In which 𝜆 is the rate form of the so-called plastic multiplier. This is just a multiplier that does not 

have a direct physical meaning. In the case of purely elastic behavior 𝜆 is zero whereas in the case 

of plastic behavior 𝜆 is positive and 𝑑𝑔 is the increment of plastic potential function. The value of 

𝜆 can be evaluated by invoking the so-called Prager’s consistency condition for plastic flow, which 

reflects the principal that a material point remains in plastic state (𝑑𝑓 = 0, where 𝑓 is the yield 

function). 

 

The evolution of the yield function can be obtained as: 

 

𝑑𝑓 =
𝑑𝑓

𝑑𝜎1
𝑑𝜎1 +

𝑑𝑓

𝑑𝜎3
𝑑𝜎3 +

𝑑𝑓

𝑑tan∅
𝑑tan∅ = 0                         (19) 

 

The yield function is expressed in terms of stress invariants. The derivatives of the yield 

function with regards to stresses may be obtained for each derivative term through the chain rule: 

 

𝑑𝑓

𝑑𝜎1
=
𝑑𝑓

𝑑𝜏

𝑑𝜏

𝑑𝜎1
+
𝑑𝑓

𝑑𝜎𝑛

𝑑𝜎𝑛
𝑑𝜎1

𝑎𝑛𝑑
𝑑𝑓

𝑑𝜎3
=
𝑑𝑓

𝑑𝜏

𝑑𝜏

𝑑𝜎3
+
𝑑𝑓

𝑑𝜎𝑛

𝑑𝜎𝑛
𝑑𝜎3

           (20)
 

 

The derivatives of yield function with respect to the stress invariants are derived from Eq. 10: 

 

𝑑𝑓

𝑑𝜏
= 1 𝑎𝑛𝑑  

𝑑𝑓

𝑑𝜎𝑛
= tan∅                                                                  (21)

 

 

and the derivatives of the stress invariants with respect to general state of stresses are derived from 

Eqs. 11 and 12:    
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𝑑𝜏

𝑑𝜎1
= −

1

2
𝑠𝑖𝑛2𝛼,

𝑑𝜎𝑛
𝑑𝜎1

=
1

2
(1 + 𝑐𝑜𝑠2𝛼),

𝑑𝜎𝑛
𝑑𝜎3

=
1

2
(1 − 𝑐𝑜𝑠2𝛼) 𝑎𝑛𝑑 

𝑑𝜏

𝑑𝜎3
=
1

2
𝑠𝑖𝑛2𝛼       (22) 

 

               Substituting these values in Eq. (20), one obtains 

 

𝑑𝑓

𝑑𝜎1
= −

1

2
𝑠𝑖𝑛2𝛼 +

1

2
(1 + 𝑐𝑜𝑠2𝛼)tan∅ 𝑎𝑛𝑑  

𝑑𝑓

𝑑𝜎3
=
1

2
𝑠𝑖𝑛2𝛼 +

1

2
(1 − 𝑐𝑜𝑠2𝛼)tan∅   (23)

 
 

A similar expression can be derived for the derivatives of plastic potential functions in terms of 

stress invariants and with respect to general state of stresses, using the chain rule.  

 

𝑑𝑔

𝑑𝜎1
=
𝑑𝑔

𝑑𝜏

𝑑𝜏

𝑑𝜎1
+
𝑑𝑔

𝑑𝜎𝑛

𝑑𝜎𝑛
𝑑𝜎1

𝑎𝑛𝑑
𝑑𝑓

𝑑𝜎3
=
𝑑𝑔

𝑑𝜏

𝑑𝜏

𝑑𝜎3
+
𝑑𝑔

𝑑𝜎𝑛

𝑑𝜎𝑛
𝑑𝜎3

                                                 (24)

 
 

The derivatives of yield function with respect to the stress invariants are derived from Eq. 10: 

 

𝑑𝑔

𝑑𝜏
= 1 𝑎𝑛𝑑  

𝑑𝑔

𝑑𝜎𝑛
= tan𝜑                                                                     (25)

 

 

Substituting these values in Eq. 24, one obtain 

 
𝑑𝑔

𝑑𝜎1
= −

1

2
𝑠𝑖𝑛2𝛼 +

1

2
(1 + 𝑐𝑜𝑠2𝛼)tan𝜑 𝑎𝑛𝑑 

𝑑𝑔

𝑑𝜎3
=
1

2
𝑠𝑖𝑛2𝛼 +

1

2
(1 − 𝑐𝑜𝑠2𝛼)tan𝜑            (26)

 

 

Equation 16 can be differentiated as follows to obtain  

 

𝑑𝑡𝑎𝑛∅ = 𝐵𝑑𝛾13
𝑝
                                                                                   (27) 

 

In this model, the local plastic shear strain 𝑑𝛾13
𝑝

 is characterized by Eq.18. The incremental 

mobilized friction angle can be obtained as follows 

 

𝑑𝑡𝑎𝑛𝜙 = 𝐵𝜆
𝑑𝑔

𝑑𝜏
                                                                      (28) 

 

The derivatives of the yield function with regard to the mobilized friction angle may be obtained 

as: 

𝑑𝑓

𝑑𝑡𝑎𝑛𝜙
= 𝜎𝑛                                                                           (29) 
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The implementation of the softening constitutive model requires an incremental form in which the 

stress increments 𝑑𝜎1are expressed in terms of the total strain increments 𝑑𝜀1  and the plastic strain 

increment 𝑑𝜀1
𝑝 , as follows 

𝑑𝜎1 = 𝐸(𝑑𝜀1 − 𝜂𝑑𝜀1
𝑝)                                                             (30) 

 

During plastic flow, the stress tensor increment 𝑑𝜎1can be related to both the strain and local 

yields strength increment 𝑑𝜀1 and 
𝑑𝑔

𝑑𝜎1
 respectively. 

 

                                                     𝑑𝜎1 = 𝐸 (𝑑𝜀1 − 𝜂𝜆
𝑑𝑔

𝑑𝜎1
)                                    (31) 

 

where 𝐸 is the elastic modulus tensor. After some arrangement in terms of 𝜀𝑖𝑗 and 𝜆, the following 

equation can be obtained 

 

𝑑𝑓

𝑑𝜎1
𝐸 (𝑑𝜀1 − 𝜂𝜆

𝑑𝑔

𝑑𝜎1
) +

𝑑𝑓

𝑑𝜎3
𝑑𝜎3 +

𝑑𝑓

𝑑tan∅
𝑑tan∅ = 0 

 

𝑑𝑓

𝑑𝜎1
𝐸𝑑𝜀1 − 𝜂𝜆𝐸

𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
+
𝑑𝑓

𝑑𝜎3
𝑑𝜎3 + 𝜆𝐵𝜎𝑛

𝑑𝑔

𝑑𝜏
= 0

 
 

𝜆 (𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐵𝜎𝑛

𝑑𝑔

𝑑𝜏
) =

𝑑𝑓

𝑑𝜎1
𝐸𝑑𝜀1 +

𝑑𝑓

𝑑𝜎3
𝑑𝜎3 

 

Thus, the positive plastic multiplier λ can be expressed as
 

 

                                             𝜆 =

𝑑𝑓

𝑑𝜎1
𝐸𝑑𝜀1 +

𝑑𝑓

𝑑𝜎3
𝑑𝜎3

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

                   (32) 

 

where 𝐻𝑝is defined as a plastic modulus 

 

                                                             𝐻𝑝 = 𝐵𝜎𝑛
𝑑𝑔

𝑑𝜏
                       (33) 

 

Geotechnical tests are partly stress and partly strain controlled. For instance, a biaxial test is 

conducted by controlling the vertical principal strain rate and a horizontal stress. Suppose now we 
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partially control the principal major stress 𝜎1and partially control the principal minor strain𝜀3. 

Then, substituting Eq. 32 into Eq. 31, one can obtain the equation as: 
 

          𝑑𝜎1 = 𝐸 (𝑑𝜀1 − 𝜂
𝐸

𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
𝑑𝜀1 +

𝑑𝑓

𝑑𝜎3

𝑑𝑔

𝑑𝜎1
𝑑𝜎3

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

)                                      (34) 

 

This implementation also requires an incremental strain form 𝑑𝜀3which is expressed in terms of 

the total strain increment 𝑑𝜀1   and the incremental minor stress 𝑑𝜎3as follows: 

 

                                           𝑑𝜀3 =
𝑑𝜎3
𝐺
+ 𝜆

𝑑𝑔

𝑑𝜎3
                                                               (35) 

 

𝑑𝜀3 =
𝑑𝜎3
𝐺
+ 𝜂

𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎3
𝑑𝜀1 +

𝑑𝑓

𝑑𝜎3

𝑑𝑔

𝑑𝜎3
𝑑𝜎3

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

                                                (36) 

 

The plastic flow rule for the entire assembly in Eqs. 34 and 36 can be written in the matrix form: 

 

{
 
 

 
 
𝑑𝜎1

𝑑𝜀3}
 
 

 
 

=

[
 
 
 
 
 
 
𝐸 (1 −

𝐸𝜂
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

)
−𝐸𝜂

𝑑𝑓

𝑑𝜎3

𝑑𝑔

𝑑𝜎1

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

𝐸𝜂
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎3

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

1

𝐺
+

𝐸𝜂
𝑑𝑓

𝑑𝜎3

𝑑𝑔

𝑑𝜎3

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)]

 
 
 
 
 
 

{
 
 

 
 
𝑑𝜀1  

𝑑𝜎3}
 
 

 
 

            (37) 

 

 

{
𝑑𝜎1
𝑑𝜀3

} = [
𝐷11  𝐷12  
𝐷21  𝐷22  

] {
𝑑𝜀1  
𝑑𝜎3

}                                                                      (38) 

 

Thus, the elasto-plastic constitutive relationship under a biaxial loading test is presented by using 

the elasto-plastic theory in strain space and taking compression in 𝑑𝜎1 as positive loading. The 

confining pressure or side loading is a constant load (𝑑𝜎3 = 0), as established in the DEM and the 

experimental tests. With these results in hand, we can further refine the incremental form of the 

stress-strain constitutive equation. The constitutive model in the flow theory of plasticity gives the 

stress increment in terms of the strain increment: 
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      𝑑𝜎1 = [𝐷11  ]𝑑𝜀1               𝑑𝜎1 = [𝐸 (1 −
𝐸𝜂

𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

)] 𝑑𝜀1                (39) 

 

   𝑑𝜀3 = [𝐷21  ]𝑑𝜀1               𝑑𝜀3 = [
𝐸𝜂

𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎3

(𝜂𝐸
𝑑𝑓

𝑑𝜎1

𝑑𝑔

𝑑𝜎1
− 𝐻𝑝)

] 𝑑𝜀1                                 (40) 

 

Substituting the expression Eqs: 23, 25 and 26 into equation 39 and 40  

 

𝑑𝜎1 = [𝐸 (1 −

𝐸

4
𝜂(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan∅)(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan𝜑)

(
𝐸

4
𝜂(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan∅)(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan𝜑) − 𝐵𝜎𝑛)

)] 𝑑𝜀1              (41)

  

𝑑𝜀3 = [

𝐸

4
𝜂(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan∅)(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan𝜑)

(
𝐸

4
𝜂(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan∅)(𝑠𝑖𝑛2𝛼 − (1 + 𝑐𝑜𝑠2𝛼)tan𝜑) − 𝐵𝜎𝑛)

] 𝑑𝜀1           (42) 

 

The internal variables in these functions can be used in order to address elasto-plasticity softening 

features. The effects of parameters on the shape and the size of yield surfaces are clearly 

demonstrated and illustrated for all function in biaxial strain space. The aim of this study is to 

present such constitutive formulation and to test the method on a fairly simple example that was 

studied previously using a discrete element method approach, and using previously experimental 

data on loose and dense RF-Hostum sand. In this study, we assume development of a shear band 

during softening and derive effective stiffness matrices accounting for their effect, but the 

incremental analysis is carried out in the usual way without separate treatment of the shear band 

and the surrounding material. 

 

The input file in the present model is built up on the following information: (1) Input the most 

basic material properties, such as the modulus of elasticity 𝐸, passion’s ratio 𝜐 , internal friction 

angle 𝜙 and dilation angle 𝜑; (2) Input the geometric properties, such as the height of specimen 𝑎, 

shear band thickness 𝑑 and inclination angle 𝛼; (3) Determine the softening stiffness matrices 𝐷11 

and 𝐷21at post-localization by the relationships given in Eqs.39 and 40; (4) Obtain the incremental 

major principal stress 𝑑𝜎1and incremental minor principal strain 𝑑𝜀3; which are used further to 

determine the deviatoric stress on the stress surface and volumetric strain, respectively, by the 

relationships given in Eqs. 41 and 42. Incremental analysis was applied in the case of a biaxial 

compression with strain-softening elastoplasticity. In this particular case, incremental softening 

elastoplasticity was found to produce negative values in the tangential stiffness matrix 𝐷11. Hence, 
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according to Eq. 41, this negative value will produce negative values for the incremental loading 

stress 𝑑𝜎1. The development of the stress state 𝜎𝑖 can be regarded as an incremental process: 

 

                                                            𝜎𝑖 = 𝜎𝑖−1 + 𝑑𝜎𝑖                                                                  (43) 

 

In this relation 𝜎𝑖 represents the actual state of stress and 𝜎𝑖−1represents the previous state of 

stress, with its initial value at bifurcation point. The derivative 𝑑𝜎1  is negative during softening. 

 

After the maximum deviatoric stress  𝑞𝑖−1 at the point of bifurcation is reached, the specimen 

enters the softening stage and the deviatoric starts to decrease. 

 

                                                               𝑞𝑖 =
1

2
(𝜎𝑖 − 𝜎3)                                                         (44) 

 

The first incremental loading point in the body of this model has been directly imposed at the end 

of the bifurcation point. The incremental loading used for this analysis did not include elastic and 

hardening loading which is already available in the hardening plasticity model developed by 

(Gutierrez 2010). The model developed herein is capable of describing the strain softening regime 

as well as identifying the stress state which corresponds to softening which is considered to 

coincide with the satisfaction of localization condition (Hill 1962; Rice 1976)  

 

The softening constitutive model has been implemented into a spread sheet in an incremental 

form. The incremental form of the new softening model is provided in Eqs. 41 and 42 and can be 

used to calculate the elasto-plastic deformation. Data from biaxial compression testing on RH-

Hostum sand and through DEM analysis for this sand has been selected to demonstrate the 

proposed softening model. 

 

 

6. Model Demonstration 
 

The following section intends to demonstrate strain softening through the use of the developed 

constitutive model. Model predictions are compared against DEM analysis and experimental data. 

The demonstration is performed for two densities (loose and dense) of RF-Hostun sand. In each of 

these demonstrations, data were taken from drained biaxial tests reported by [17]. RF-Hostun sand 

is fine grained; the mean particle diameter 𝐷50 is 0.35mm. Other sand properties and details are 

reported in Desrues and Viggiani’s strain localization in Sand: An Overview of Experimental 

Results Obtained in Grenoble Using Stereophotogrammetry(2004). A demonstration will also be 

made for a DEM dense granular material, as performed by [18]. Comparisons will be made in 

terms of the predicted deviatoric stress-strain response from the softening elastoplasticity model 
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beyond bifurcation point. The stress-strain prediction will be demonstrated with the DEM and 

experimental data. 

 

The plane strain biaxial test results for loose and dense RF-Hostun sands and DEM 

simulations were performed on samples isotropically consolidated at initial mean stresses of 

𝑆0 = 200, 400 𝑎𝑛𝑑 800𝐾𝑃𝑎 . The specimens were then sheared under constant stresses 𝜎3 and 

strain 𝜀1  control. The results are shown in Figs. 6, 7 and 8 for dense, loose RF-Hostun and DEM 

samples, respectively, in terms of deviatoric stress 𝑞 vs. axial strain 𝜀1 and volumetric strain𝜀𝑣 vs. 

axial strain𝜀1 . The predicted results from the developed softening constitutive model are compared 

to each experimental and DEM sample. All granular samples, which were sheared at up to 10% of 

shear strains, exhibit well-defined peak shear stresses and dilatant responses at large strains. As 

can be seen in Fig. 6a, the relationship between deviatoric stress 𝑞 and strain can show a clear 

strength softening behavior in the stress-strain curve, with sudden rate change from hardening to 

softening at the bifurcation point. This can be explained by a dramatic change in tangential 

stiffness matrix 𝐷11immediately after the bifurcation point.  The developed softening model 

accurately depicts this trend in the experimental data, as can be seen on Figure 6a. Figure 6b shows 

the relationship between volumetric and axial strain for dense RF-Hostun sand. It is clear that the 

developed softening model followed the trend of experimental data. Figure 7a show a gradual 

softening for loose RF-Hostun after the bifurcation point. In term of stress-strain curves, there may 

be a small difference in the tangential stiffness matrix 𝐷11 . Volumetric contraction is more 

pronounced for the loose sample than the dense sample as can be seen in Fig. 7b. The predicted 

results of softening model and experimental results are in good agreement for the two lower values 

of  𝜎3  and exhibit a slight divergence at the high value of 𝜎3 . Similarly, the constitutive model 

predicts the trend of softening behavior and shows good agreement with the DEM stress-strain 

curves. 

 

The softening curves show contraction of the stress path beyond the bifurcation point as can 

be seen in Fig. 8a. All softening curves of the constitutive model have a similar philosophy, to give 

the tangent matrices an essential role, which is needed to define the softening behavior beyond 

bifurcation. The degree of softening is related directly to internal variables which therefore form 

the tangent matrix 𝐷11. For example, the model assumes that the friction angle  𝜙 and dilation 

angle 𝜑 vary and depend on the stress level. The model also assumes that any calculation of strain 

softening should include a finite width for the strain localization zone. This is in close agreement 

with experimental data.  

 

As can be seen in Figs. 6, 7 and 8, the post-localization strain softening is more pronounced in 

the dense samples than the loose samples and at high confining stresses than low confining 

stresses. Whereas, volume reduction is more pronounced for low confining stresses than high 
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confining stresses and for the loose samples than dense samples. Thus an analysis of softening 

curves for the constitutive model needs to represent both the material and geometric components 

of strain softening. With such analysis experimental test data could be interpreted objectively. It 

should then be possible to successfully predict the behavior of test specimens of various shapes 

and sizes. In order to give more attention to the geometric component of strain softening (refer to 

length scale𝜂 ), investigation will be conducted on the influence of this parameter on the response 

of strain softening. 

 

 

 

7. The Influence of Length Scale 𝜼 on Softening Elastoplasticity Model 
 

The length scale𝜂, following the Pietruszczak and Mroz model [2]depends on thickness of 

shear band, specimen height 𝑎 and the inclination of the shear band 𝛼 as described in Eq. 5. In 

order to give more attention to the influence of the shear band thickness 𝑑 on strain softening, the 

choice of the length scale𝜂 will be conducted based on the variation of the values of 𝑑 with 

keeping 𝑎 and 𝛼 constant. To further investigate the effect of the length scale𝜂 on softening 

behavior, mathematical analyses have been carried out for𝜂 = 0.0, 0.01, 0.05 and 0.1, by keeping 

all other internal variables constant. All calculations presented here have been carried out with a 

confining stress  𝜎3 equals800 𝐾𝑃𝑎. The value 𝜂 = 0.0 represents a shear band thickness equal to 

zero (𝑖. 𝑒.  𝑑 = 0.0). As the value of 𝜂 increases the strain localization becomes wider 

 

Figure 9 illustrates the prediction of the softening behavior using the softening elastoplasticity 

model. It shows that the length scale strongly influences the prediction of softening behavior. 

Shear bands can potentially have zero thickness at or beyond the bifurcation point, which 

effectively relates to zero softening. However, the analysis indicates that no localization is 

expected if the model includes a shear band with zero thickness. Length scale 𝜂 serves to increase 

the shear band softening, giving rise to an interpretation of shear banding as a localization of 

strains resulting from internal variables associated with the tangential stiffness matrix 𝐷11. It is 

observed that  𝜂 or the width of localization zone 𝑑 increases when the stiffness matrix  𝐷11 

becomes more negative or the amount of softening is more dominated. The term softening implies 

that the increase in the length scale 𝜂 causes a reduction in an incremental stress loading. For 

example, the use of a high 𝜂 (0.1) induces an increase of the amount of softening. The thickness of 

shear band governs the degree of softening. The degree of softening is in this case is defined as the 

negative slope of the curve of deviatoric stress-strain. 
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8. Conclusion  
 
The softening model predicts softening behavior using the constitutive stiffness matrices 

function, and is summarized as the follows: 

 

1. It provides a realistic transition from hardening to softening at the bifurcation point. The abrupt 

transition observed in Fig. 6 indicates a sudden rate change from hardening to softening at the 

bifurcation point. On the other hand, Figure 7 shows the changing rate from soil hardening to 

softening is gradual and smooth. It indicates that stress state remain constant at a residual strength 

when soil experiences large strains, as show in Figs. 6, 7, and 8 

 

2. It is based on the strain space elastoplasticity theory used to model granular soil behavior in the 

strain hardening model [1]and is then coupled with a strain softening model (the present work). 

The yield function describes the shape and the size of yield surface. The increasing and decreasing 

size of yield surface is controlled by hardening and softening respectively. 

 

3. The behavior of elasto-plastic degradation is observed for granular soils in the post peak range. 

The major advantages of this model include strain softening and the residual state, so the model 

can predict a wide range of soil stress paths. 

 

4. The model gives flexibility to fit a wide range of experimental data (loose and dense sand). The 

parameters used are shape factors, softening modulus 𝐵, and the shear band thickness𝑑. These 

parameters can be further adjusted on the basis of experimental data. 

 

5. The model can be modified to discuss strain softening under different boundary conditions, it is 

reasonable to generally use the plasticity theory. 

 

6. The length scale parameter 𝜂, has non-dimensional length, which shows the effect of shear band 

thickness in the formulation of a softening model. The results show that increasing of strain 

localization thickness leads to increasing the amount of softening.   
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Figure 1 Typical deviatoric stresses vs. axial strain behavior of frictional soil 

(a) (b)

 
Figure 2 Comparison between Hardening Model (Gutierrez 2010) and experimental data for dense RF-

Hostum sand under plane strain biaxial tests. Values shown in the legend are the confining stress used in 

each tests. (a) Shear stress vs. axial strain. (b) Volumetric strain vs. axial strain. 

 

(a)

a

a

R i g i d

p



n

t


e



x

y
(b)

+

d

 

Figure 3 The mode of deformation of a representative element (Pietruszczak and Mroz 1981). 
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Figure 4 (a) Idealized shear band geometry in the biaxial test, (b) Applying principal strains and (c) 

Applying principal stresses. 

 

 

n



p

n

2cosq

q  2sinq2α
3 1

),( 
n

 

Figure 5 Relationship between principal stresses and the stresses in the shear band 
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Figure 6 Comparison between Post-bifurcation Model and experimental data for dense RF-Hostum sand 

under plane strain biaxial tests. Values shown in the legend are the confining stress used in each tests. (a) 

Shear stress vs. axial strain. (b) Volumetric strain vs. axial strain. 
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Figure 7 Comparison between Post-bifurcation Model and experimental data for loose RF-Hostum sand 

under plane strain biaxial tests. Values shown in the legend are the confining stress used in each tests. (a) 

Shear stress vs. axial strain. (b) Volumetric strain vs. axial strain. 
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Figure 8 Comparison between Post-bifurcation Model and DEM data for dense Particles under plane strain 

biaxial tests. Values shown in the legend are the confining stress used in each tests. (a) Shear stress vs. axial 

strain. (b) Volumetric strain vs. axial strain. 
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Figure 9 The influence of Length Scale η on Softening Elastoplasticity Model (a) Stress-strain curves (b) 

Volumetric strain-strain. 

 


