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Abstract 

In this paper, the problem of model reference adaptive control for unit memory discrete repetitive 
processes is analyzed and solved by employing a lifting technique that allow us to view the discrete repetitive 
processes as a first-order multivariable plant. An adaptive controller gain adjustment algorithm in iteration 
domain is given that ensures the monotonic convergence of the tracking error between the process and the 
desired reference model outputs under persistent excitation conditions. 
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1. Introduction 
 

There is a considerable amount of literature on continuous-time single-input single-output (SISO) 

adaptive control algorithms [1], [2]. However, the global stability and convergence of these 

algorithms has been studied under general assumptions [3], [4]. Model Reference Adaptive 

Controller using state variables is proposed for a class of multi-input multi-output (MIMO) 

systems under assumption that one matrix is known [5]. The structural flexibility of discrete 

repetitive processes (DRPs) representation that produced from applying the “supervectors” and 

lifting technique in [6] motivated us to extend the model reference adaptive control schemes for 

discrete (MIMO) systems in the literature to (DRPs). Many problems in control theory are 

characterized by systems that have a repetitive nature, whereby the operation of the system to be 

controlled is repeated in some fashion. One such class of problems is iterative learning control 

(ILC) [7], [8]. 

Another class of problems with a repetitive nature is defined by a plant given by [9] 
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x(k + 1, t + 1) = Ax(k + 1, t) + Bu(k + 1, t) + B0y(k, t) 

y(k + 1, t) = C x(k + 1, t) + Du(k + 1, t)+ D0y(k, t)                                        (1)                                                         

where x(k, t) is the state, u(k, t) is the input, y(k, t) is the output. It is clear that (1) has dynamics in 

two dimensions: a time, or along-the-pass, dimension, t, also simply called the time axis, and an 

iteration dimension k, also referred to as the repetition or iteration axis. 

Here we see a two-dimensional aspect, with evolution in time t and iteration k, as in ILC. But, in 

ILC systems the iteration-domain variation arises due to the controller, whereas in (1) the iteration- 

domain memory in the system is inherent in the plant. Such systems are called unit-memory 

processes [9] (meaning that only information from the most recent iteration is used in the plant). 

The continuous version of (1) is called a differential repetitive process while (1) is called a discrete 

repetitive process. In this paper we will restrict our attention to unit-memory discrete repetitive 

processes, or DRPs.The goal of the controller is to improve the operation from trial-to-trial (or 

pass-to-pass or iteration to iteration). 

Repetitive processes have been studied for a number of years, perhaps arising first in the 

application of long-wall coal mining. This problem, together with a number of other repetitive 

processes that arise in applications, has been described in [9], which presents a comprehensive 

analysis of the system- theoretic properties of repetitive processes, including stability, 

controllability, and observability. Notably, it is pointed out in [9] that ILC is in fact a repetitive 

process, a point also captured in the ILC framework presented in [7]. 

In [9] a number of results are provided for feedback controller design for repetitive processes. Here 

we add to these results by considering the adaptive controller case. First, we use a lifting technique 

and the definition of an iteration-domain frequency operator to change the two-dimensional single-

input, single-output plant into a one-dimensional multivariable system. Next it is shown how to 

describe a closed-loop DRP process as a multivariable control system. Then, taking the advantage 

of the structural flexibility matrices that produced to develop a systematic MRAC design strategy 

that ensures perfect tracking along the pass and asymptotically-convergent tracking along the 

iteration axis. Two examples are then considered to illustrate the results via analysis and 

simulations : designing a model reference adaptive controller to track a desired DRP output and an 

estimator to estimate the markov parameters of DRP in iteration domain that required by the 

former design. 
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2. Drp Representations 

 

2.1 DRPs in the 2-D Time and Iteration Domains 

 

Consider again the single-input, single-output (SISO) DRP (1) for 0 ≤ t ≤ N , where the positive 

integer t is the independent variable associated with the “along-the-pass” axis, N  is the pass 

length, and the positive integer k ≥ 0 is the pass number, or independent variable associated with 

the iteration axis. We assume there exists an initial boundary condition y-1 (t) and that xk (0) = x0 

for every k. 

A system such as (1) can also be usefully described in the complex frequency domain (using usual 

z-transform notation) as 

Y (k + 1) = H u (z)U (k + 1, z) + H y (z)Y (k, z)                                                      (2) 

where Y (k, z) and U (k, z) are the z-transforms of y(k, t) and u(k, t), respectively, and  

Hu(z) = C (zI − A)−1B + D  

H y (z) = C (zI − A)−1B0 + D0 

2.2 DRPs as 1-D Iteration-Domain Systems 

As described above, the DRP is a two-dimensional (2-D) SISO system. However, we can convert 

it into a one-dimensional (1-D) multiple-input, multiple-output (MIMO) system by first defining 

so-called “supervectors” as 

U (k) = (u(k, 0), u(k, 1), · · · , u(k, N − 1))
T
 

Y (k) = (y(k, 0), y(k, 1), · · · , y(k, N − 1))
T
 

We can then give the lifted representation of the system as 

Y (k + 1) = H u U (k + 1) + H y Y (k)                                                                                 (3) 

Where  H u   and H y    are lower-triangular Toeplitz matrices of rank N  whose elements are the 

Markov parameters of the system, given by: 
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𝐻𝑢 = [

ℎ0
𝑢 0

ℎ1
𝑢 ℎ0

𝑢
… 0
… 0

⋮ ⋮
ℎ𝑁−1

𝑢 ℎ𝑁−2
𝑢

⋱ ⋮
… ℎ0

𝑢

]            and      𝐻𝑦 =

[
 
 
 
 

ℎ0
𝑦

0

ℎ1
𝑦

ℎ0
𝑦

… 0
… 0

⋮ ⋮
ℎ𝑁−1

𝑦
ℎ𝑁−2

𝑦
⋱ ⋮
… ℎ0

𝑦
]
 
 
 
 

           

Where    ℎ0
𝑢 = 𝐷, ℎ0

𝑦
= 𝐷0   and for  𝑖 ≥ 1, ℎ𝑖

𝑢 = 𝐶𝐴𝑖−1𝐵, ℎ𝑖
𝑦

= 𝐶𝐴𝑖−1𝐵0    

 

2.3 DRPs in the Iteration-Frequency Domain 

 

As defined in [10], for each t  [0, N ], let the (one-sided) w-transform W (·) be given as 

𝑊({𝑢(𝑘. 𝑡)}) = ∑ 𝑢(𝑘. 𝑡)𝑤−1                                            (4)

∞

𝑘=0

 

As we have noted in earlier work, the w-transform is similar to the standard z-transform, but it is 

operating from trial-to-trial, with time t fixed, as opposed to the standard z-transform operator, 

which operates from time step-to-time step, with k fixed. The first formal definition of this 

operator was given in [10], but it was first introduced in [6] and its use in ILC has been given in a 

number of places, including [11], [12], [13]. 

Two useful properties of the w-transform are: 

1)  Shift Property [10]: Assuming uj  = 0 for all j < 0, we can use (4) to write 

W ({u(k - n, t)}) = w−n W ({u(k, t)}) 

2)  Final Value Theorem: For a signal (supervector) Xk   we have 

lim
𝑘→∞

𝑋(𝑘) = lim
𝑤→1

𝑋(𝑤 + 1)𝑋(𝑤) 

when the limit exists (e.g., if X (k) is “stable”). Applying the w-transform to our lifted vectors U 

(k) and Y (k), to get U (w) and Y (w), respectively, and applying the shift property, we may write 

the DRP (3) as 

W ({Y (k + 1)}) = W ({H u U (k + 1) + H y Y (k)}) 

wY (w) = wH uU (w) + H y Y (w) 

or 

Y (w)   =   w(wI − H y )−1H uU (w)                                                                   (5) 
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         =  wH u(wI − H y )−1 U (w) 

The latter expression due to the fact that lower-triangular Toeplitz matrices commute. 

 

3. Non Adaptive Controller of Drps 

 

In conventional DRP theory, as described in [9], a number of control algorithms have been posed, 

including: 

1)  Memory-less state or output feedback: 

uk+1 (t) = F xk+1 (t) + Gyd (t) 

where F, G  are matrices and  yd (t) is the reference trajectory. 

2)  “PI”-like dynamic pass profile controller: 

𝑢𝑘+1(𝑡) = 𝑘1𝑢𝑘+1(𝑡) + 𝐾2(𝑧)∑ 𝑒𝑗(𝑡)
𝑘
𝑗=1                                                  (6)    

where Ki (z) are time-domain filters. 

Considerable analysis has been carried out on such algorithms, including H∞-based design for the 

case of the dynamic pass profile controller. However, we note that the structure of all these 

algorithms is similar in that only the dynamic pass controller makes use of input data from past 

trials (that is, no terms uk (t), uk-1 (t), etc. appear in the update for uk+1 (t)) and only the so-called 

“PI” form uses the error of the trajectory. Also, though we note that one can achieve stability and 

tracking with the memory-less state feedback equation, this result will not be robust, as we 

demonstrate below. 

Thus, motivated by ILC thinking, we find it natural to consider algorithms that explicitly use the 

error of the trajectory as well as information about the both the input and the error from multiple 

past trials. Specifically, as in a typical ILC algorithms, consider using filtered errors from m 

previous passes as well as the current pass and filtered inputs from n ≥ m previous passes, resulting 

in an algorithm of the form: 

uk+1 (t)  =  −D̄ 
n−1(z)uk (t) − · · · − D̄ 

0(z)uk−n+1 (t) 

+  Nm (z)ek+1 (t) + · · · + N0 (z)ek−m+1 (t)  (7) 
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Where D¯ i (z)  and Ni (z)  denote discrete-time filters with the usual abuse of notation and the 

error is defined as ek (t) = yd (t) − yk (t). Note that we admit the possibility of an iteration-varying 

reference and that with the exception of the current pass factor Nm(z), all these filters may be non-

causal (in time). 

To proceed, we apply the lifting and w-transform machinery introduced in the previous section to 

(7)  in the usual way (see [10], for example), getting first 

Uk+1    =   −D̄ 
n−1 Uk − · · · − D̄ 

0 Uk−n+1                                                                                      (8) 

+  Nm Ek+1 + Nm−1Ek + · · · + N0Ek−m+1 , 

which becomes, after taking the w-transform of both sides of this equation, applying the shift 

property, and combining terms, 

  D̄ c(w)U (w) = Nc(w)E(w), 

We can then write the relationship between U (w) and E(w)  as a matrix fraction: 

𝑈(𝑤) = 𝐶̅(𝑤)𝐸(𝑤)                                                                                    (9) 

Where   𝐶̅(𝑤) = 𝐷̅𝑐
−1(𝑤)𝑁𝑐(𝑤)     

                                                                                             

4. Model Reference Adaptive Control of Drp 

 

Figure 1 shows the proposed structure of the model reference adaptive control of the discrete 

repetitive processes in the iteration domain (w-domain). Using the supervectors the lifted 

representation of the discrete repetitive process is rewritten for convenience: 

Yp (k + 1) = H u U (k + 1) + H y Yp (k)                                                                        (10) 

and the transfer matrix of the plant in w-domain is 

Gp (w) = w(wI − H y )−1H u                                                                                                                              (11) 

where  H
u
  ϵ  R

N xN   
and H

y
  ϵ R

N xN   
are unknown lower-triangular Toeplitz matrices of rank N  

whose elements are the Markov parameters of the system as described in section (2.2) and it is 

assumed that only the sign of the first Markov parameter H
u
  is known. 
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Figure 1.    The MRAC structure of DRPs in w-domain. 

The reference model which describes the desired behavior of the DRP, is characterized by the 

linear time invariant system 

Ym (k + 1) = Bm r(k) + Am Ym (k)                                                                        (12) 

and the transfer matrix of the reference model in w-domain is 

Gm (w) = (wI − Am )
−1Bm                                                                           (13) 

where Am  ϵ  R
N xN

   is a known and asymptotically stable matrix, Bm ϵ RN xN   is a known matrix, 

and r  is a N-dimensional iteration invariant input vector with bounded elements or r(k) iteration-

varying input reference [14]. 

4.1 The Control Law  

The control objective is to choose the input vector U(k) ϵ R
N
   such that all signals in the closed-

loop plant are bounded and the plant output Yp (k) ϵ R
N
  follows the output Ym (k) ϵ R

N 
   of a 

reference model where N is the pass length and the tracking error 

e(k) = Yp (k) − Ym (k)                                                                                       (14)                                                              

monotonically tends to zero as the iteration k → ∞. The control U to the plant, is generated 

introducing control law 

U (k + 1) = −K Yp (k) + Lr(k)                                                                             (15) 

where  K ϵ R
N xN   

and  L ϵ R
N xN  

are the estimates of the controller matrix gains K* and L* 

respectively, to be generated by an adaptive law. It is worth to note that the control law (15) is a 
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special case of the general ILC, it directly follows by substituting equation (10) in equation (15) 

that 

U (k + 1) = D̄ U (k) + N E(k)                                                                                    (16) 

where D¯ = −K H
u
  and N = K H

y
  = L, which is ILC like algorithm. Using equation (15) and 

equation (11) the closed loop transfer matrix (plant and controller) becomes 

Gcl (w) = [wI − (H y − H uK )]−1 H uL                                                               (17)  

In order to achieve the control objective, we need to guarantee the existence of K* and L* such 

that the equations 

H y − H uK ∗ = Am ,        H uL∗ = Bm                                                                                                          (18) 

are satisfied. Then the transfer matrix of the closed-loop plant (17) is the same as that of the 

reference model (13) and Yp (k) → Ym (k) exponentially fast for any bounded reference input 

signal r. 

      It is worth to mention that in general, K*,  L*  might not be existed to satisfy the matching 

condition in equation (18) for the given matrices, implying that the control law (15) may not have 

enough structural flexibility to meet the control objective. In contrast to our case where the super-

vectors technique formulated the DRP matrices in lower- triangular Toeplitz which give the 

enough structural flexibility to ensure the existence of the solution of equation (18) regardless of 

the invertibility of the matrix H u in case of    (H0
u). 

4.2 The Adaptive Law 

 

The controller parameters are to be directly or indirectly generated by an appropriate adaptive law. 

In this paper the direct MRAC method has been used, where the plant is to be parameterized in 

terms of the controller parameters. By extending the approaches that used for the single input-

single output (SISO) continuous systems in [1] and for the multivariables continuous systems 

(MIMO) in [5], to the systems in the iteration domain and by choosing the Am   and Bm   of the 

reference model such that the transfer matrix Gm (w) in (13) is strictly positive real matrix, the 

following adaptive law follows: 

[
𝐾(𝑘 + 1)

𝐿(𝑘 + 1)
] = [

𝐾(𝑘)

𝐿(𝑘)
] + [

𝐵𝑚
𝑇 𝑃𝑒(𝑘)𝑠𝑖𝑔𝑛(𝑙) 0

0 𝐵𝑚
𝑇 𝑃𝑒(𝑘)𝑠𝑖𝑔𝑛(𝑙)

]𝜔                          (19) 

Where:         ω = 
 

Y T (k)   −rT (k)
  T 

, 
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𝑠𝑖𝑔𝑛(𝑙) = {
1  𝑖𝑓  𝐿∗ 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

−1  𝑖𝑓  𝐿∗ 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥
 

e(k) = Yp (k) − Ym (k) 

and P = P T  > 0, satisfies     𝐴𝑚
𝑇 𝑃𝐴𝑚 − 𝑃 = −𝑄𝑄𝑇. 

for some Q = QT   > 0. Further, if the signal vector ω(k) is “persistently exciting”, then  

K (k) → K ∗  and   L(k) → L∗ as k → ∞. 

Or          lim𝑘→∞‖𝛷(𝑘)‖ = 0. 

where Φ(k) = [
 
K (k) − K ∗   L(k) − L∗]T. 

 

4.3 Stability: Convergence of The Tracking Error 

Subtracting equation (12) from (10), and using equations (15), (18), the error equation is obtained 

as 

e(k + 1) = Am e(k) + Bm L*−1 (−ΦT (k)ω(k))                                                   (20) 

then the error transfer matrix 

Ge (w) = (wI − Am )−1Bm = Gm (w)                                                           (21) 

The proof of stability follows directly by using a lyapunov function candidate 

V (e, Φ) = eT P e + tr(ΦT ΓΦ) 

from the discrete Kalaman-Szogo-Popov lemma it is known that, if Gm (w) is SPR discrete transfer 

matrix, then there exist a symmetric positive definite matrix P and matrices M, Q such that 

𝐴𝑚
𝑇 𝑃𝐴𝑚 − 𝑃 = −𝑄𝑄𝑇, 

𝐵𝑚
𝑇 𝑃𝐴𝑚 + 𝑀𝑇𝑄𝑇 = 𝐶𝑚

𝑇 , 

𝐷𝑚 + 𝐷𝑚
𝑇 − 𝐵𝑚

𝑇 𝑃𝐵𝑚 = 𝑀𝑇𝑀. 

compute the change of V (k) along (20) and using (19), we get 
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4V (k) = V (k + 1) − V (k) = −eT QQT e ≤ 0. 

Hence, the equilibrium state is uniformly stable and 

lim𝑘→∞‖𝑒(𝑘)‖ = 0. 

Again it is worth to mention that the structural flexibility (eg. H
u
, H

y
  are lower-triangular Toeplitz 

matrices) that evolved by applying the super-vectors technique to DRP enabled us to overcome the 

restriction that the unknown L* in the matching equation H
u
L*  = Bm   is either positive or 

negative definite. Since H
u
  is a lower-triangular Toeplitz matrix, it’s inverse is also a lower-

triangular Toeplitz. 

 

5. Examples and Simulation Results 

  

To illustrate the results of the MRAC scheme that presented in the previous section, consider the 

following discrete repetitive plant 

Y (k + 1, z) = H u(z)U (k + 1, z) + H y (z)Y (k, z) 

Where: 

𝐻𝑢(𝑧) =
1.2 + 1.24𝑧−1 + 0.085𝑧−2

1 + 0.2𝑧−1 + 0.0125𝑧−2
 

 

𝐻𝑦(𝑧) =
0.8 + 0.66𝑧−1 + 0.09𝑧−2

1 + 0.2𝑧−1 + 0.0125𝑧−2
 

and with pass length t ∈ [1, 30]. Using the “supervectors” and lifted representation , the system 

becomes as in (10) with 

𝐻𝑢 = [

1.2 0
1 1.2

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 1.2

]            and      𝐻𝑦 = [

0.8 0
0.5 0.8

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 0.8

]           

where H
u
 ϵ R

30x30
  and H

y
 ϵ R

30x30
  are lower-triangular Toeplitz matrices of rank 30 whose 

elements are the Markov parameters of the system. 
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The matrices Am   and Bm  of reference model which describes the desired plant output were 

chosen such that the following requirements are met 

1) The existence of the solution of the matching eq. (18).  

There are many possibilities to choose Am   and Bm   to satisfy this condition, the simplest one 

may be to set in the form of Am  = αI
30x30

 , where |α| < 1, so that all the discrete poles of the 

reference model will be placed inside a unit circle and  Bm = βI
30x30

 , in our example we took α = 

−0.2 and β = 2 respectively. 

2)  The control objective. 

As a result of the appropriate choices of the matrices of the reference model, the control objective 

was achieved as illustrated below. In what follows three cases of the reference input to the model 

(step, time and iteration varying and signal that changes from step to time and iteration varying in 

iteration domain) will be demonstrated respectively. 

Case 1:  Constant Reference Input: Consider the following step reference signal in iteration 

domain as shown in Fig. 2. 

r(t) = 3 + sin(0.1t) + 1.5 sin(0.5t) 

The simulation result of applying the above reference signal to the proposed discrete MRAC is 

plotted in Fig. 3. The plant is assumed initially at rest. As seen in the figure, since the rms error 

between the reference model and the plant output converges to zero very fast along the iteration 

axis, the tracking is perfect. 

Case 2:  Sinusoidal Reference Input:  Consider the following signal that varies sinusoidally in 

time and iteration and takes the following form as shown in Fig. 4: 

r(t, k) = 3 + sin(0.1t) + 1.5 sin(0.5t) + 0.3 sin(0.04k) 

Fig. 5 shows the convergence of the rms error between the model and the plant output along the 

iteration axis, which indicates that the desired behavior of the plant is achieved before the iteration 

k=100. 

Case 3:  Discontinuous Reference Input:  To further illustrate the potency of the suggested 

MRAC for DRPs, we consider the case where the reference signal changes from a constant signal 

to time and iteration varying signal at k = 50 iteration as given by the following equation and 

shown in Fig. 6: 

𝑟(𝑡, 𝑘) = {
  1 + 𝑠𝑖𝑛(0.1𝑡) + 2𝑠𝑖𝑛(0.3𝑡)  1 ≤ 𝑘 ≤ 50

3 + 1.5𝑠𝑖𝑛(0.5𝑡) + 𝑠𝑖𝑛(0.02𝑘)  51 ≤ 𝑘 ≤ 100
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Fig. 7 shows that the proposed scheme can handle this change in the reference input and insure a 

perfect convergence of the rms error between the model and the plant output along the iteration 

axis, which implies that the control objective is achieved before the iteration k = 100. 

 

Figure 2.     The step reference input in iteration domain of case 1. 

 

Figure 3.    Convergence of the norm of the error of the direct MRAC scheme of DRP of case 1. 
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Figure 4.    The time varying reference input in iteration domain of case 2. 

 

 

Figure 5.    Convergence of the norm of the error of the direct MRAC scheme of DRP of case 2 . 
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Figure 6.    The reference input changes from step to time varying at k = 50 of case 3. 

 

Figure 7.    Convergence of the norm of the error of the direct MRAC scheme of DRP of case 3. 
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6. Conclusion 

 

In this paper we have systematically demonstrated how to use an adaptive control technique for 

unit memory discrete repetitive processes. Using a lifting technique and an iteration-domain 

complex frequency operator, the two-dimensional single-input, single-output plant  was  changed 

into  a  one- dimensional multivariable system. Then discrete time multivariable model reference 

adaptive control scheme was developed, which guarantees uniformly stability and asymptotic 

output tracking, and it is applicable to DRP models in iteration domain. Simulation results were 

obtained which as desired, indi- cate that using adaptive control in DRPs is certainly a promising 

approach for performance guarantees in the presence of system uncertainties. 
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