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Abstract 

In this paper, we are concerned with the oscillation of a class of second- order non-linear difference equations. 

By using the Riccati technique some new oscillation criteria are established, therefore, we generalize and 

extend a number of  existing oscillation criteria. An example is also given to illustrate our results. 
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1. Introduction 
 

This paper is concerned with the oscillation of the solutions of the second-order non-linear 

difference equation 

∆ (𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)) + 𝑞𝑛𝜑(𝑔(𝑥𝑛+1), 𝑘(𝑛 + 1, 𝑥𝑛+1, ∆𝑥𝑛+1)) = 0, 𝑛 = 0,1,        (𝐸) 

Where ∆ denotes the forward difference operator ∆𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛for any sequence {𝑥𝑛} of real 

numbers, 𝜑 𝜖 ∁ (ℝ2, ℝ) with  𝑢𝜑(𝑢, 𝑣) > 0∀𝑢 ≠ 0,
𝜕 𝜑(𝑢,𝑣)

𝜕𝑣
≤ 0∀𝑢 ≠ 0 and 𝑣 ∈ ℝ and 

𝜑(𝜆𝑢, 𝜆𝑣) =  𝜆𝜑(𝑢, 𝑣) where 𝜆 > 0, 𝑔 ∈ 𝐶(ℝ, ℝ) with 𝑥𝑔 (𝑥) > 0 ∀𝑥 ≠ 0, and 𝑔(𝑢) − 𝑔(𝑣) =

𝑔1(𝑢, 𝑣)(𝑢 − 𝑣)𝛿 for 𝑢, 𝑣 ≠ 0, 𝛿 > 0 is the ratio of odd positive integers, 𝑔1(𝑢, 𝑣) ≥ 0 and 

𝑔 (𝑢) ≥ 𝑔(𝑣)iff 𝑢 ≥ 𝑣, 𝑘 ∈ 𝐶1(ℕ × ℝ2, ℝ) with 𝑤𝑘(𝑢, 𝑣, 𝑤) > 0∀𝑤 ≠ 0, and{𝑞𝑛}𝑛=0
∞  is a 

sequence of real values. 
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A solution of (E) is a nontrivial real a sequence {𝑥𝑛} satisfying Equation (E) for 𝑛 ≥ 0. A solution 

{𝑥𝑛} of (E) is said to be oscillatory if is neither eventually positive nor eventually negative, 

otherwise it is nonoscillatory Equation (E)issaid to be oscillatory if all its solutions are oscillatory. 

There are a great number of papers devoted to particular cases of equation (E) such as 

∆(𝑟𝑛(∆𝑥𝑛)𝓇) + 𝑞𝑛𝑥𝑛+1
𝓇 = 0, 𝑛 = 0,1, …, 

∆(𝑟𝑛∆𝑥𝑛) + 𝑞𝑛𝑔(𝑥𝑛+1) = 0, 𝑛 = 0,1, …, 

and 

∆(𝑟𝑛𝜓 (𝑥𝑛)∆𝑥𝑛) + 𝑞𝑛𝑔(𝑥𝑛+1) = 0, 𝑛 = 0,1, …, 

See for  example ([1-4, 6, 7,9-26]) and references cited therein. 

For the oscillation of 

∆(𝑟𝑛𝜓 (𝑥𝑛)𝑓 (∆𝑥𝑛)) + 𝑞𝑛𝜑(𝑔(𝑥𝑛+1), 𝑟𝑛 + 1𝜓(𝑥𝑛+1) 𝑓(∆𝑥𝑛+1)) = 0, 𝑛 = 0,1, …, 

(E1) 

Where 𝜓 and 𝑓 are containuous functions on ℝwith 𝜓 (𝑥) > 0 and 𝑥𝑓 (𝑥) > 0 for all 𝑥 ≠

0, and {𝑟𝑛}𝑛=0
∞  is sequence of positive real numbers. 

For the equation (E1), E. M. Elabbasy and  Sh. R. Elzeiny [5: Theorem 2.1], proved that, if there 

exist a constant 𝑐1 ∈  ℝ+ such that 

Φ(𝑚) = ∫
𝑑𝑣

𝜑(1,𝑣)
≥ −𝑐1

𝑚

0
 for every 𝑚 ∈ ℝ,        (1.1) 

and 

lim
𝑡→∞

sup ∑ 𝑞𝑖 = ∞.                                                                                          (1.2)

𝑛−1

𝑖=𝑛0

 

Then every solution of equation (E) oscillates. 

Also ,they [5: Lemma 2.2], proved that, if 𝑓(𝑦) = 𝑦𝓇, where 𝓇 is the ratio of odd positive 

integers, and there exist positive integers 𝑁0 and 𝑁1, 𝑁1 ≥ 𝑁0 such that 

∑ 𝑞𝑖 ≥ 0 𝑎𝑛𝑑 

∞

𝑖=𝑁0

∑ 𝑞𝑖 > 0∀ 𝑁1 ≥ 𝑁0,                                                (1.3)

∞

𝑖=𝑁1
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∑ (
1

𝑟𝑛
)

∞

𝑛=0

1

𝓇

= ∞,                                                                                            (1.4) 

The function (
𝜓

𝑔
) is nonincreasing for all 𝑥 ≠ 0,                                                          (1.5) 

𝐹(𝑢) − 𝐹(𝑣) = 𝐹1(𝑢, 𝑣)(𝑢 − 𝑣), 𝑓𝑜𝑟 𝑢, 𝑣 ≠ 0, 𝐹1(𝑢, 𝑣) < 0  and 

𝐹(𝑢) ≥ 𝐹(𝑣)iff u ≤ v, where 𝐹(𝜔) = 𝜑(1, 𝜔),                                (1.6) 

And {𝑥𝑛} is a non-oscillatory solution of equation (𝐸1) such that 𝑥𝑛 > 0 for all 𝑛 ≥ 𝑁, then there 

exists an integer 𝑁 ≥ 𝑁1 such that ∆𝑥𝑛 > 0 for all  𝑛 ≥ 𝑁. 

Our objective here is to proceed further in this direction to obtain some new sufficient conditions 

for oscillation of solutions of equation(E) and some of our results obtained by implying and 

extending those in  ([1-7, 9-26)]. 

2. Main Results 
 

For strain hardening material, the yield surface must change in some way so that an increase in 

Theorem 2.1. Assume that (1.1) and (1.2) hold. Then every solution of equation (E)oscillates. 

Proof: suppose to the contrary that {𝑥𝑛} is a nonoscillatory solution of (E). 

Without loss of generality, we may assume that {𝑥𝑛} is an eventually positive solution of (E) such 

that 𝑥𝑛 > 0, 𝑛 ≥ 𝑛0.Define the sequence {𝜔𝑛} by 

𝜔𝑛 =
𝑘(𝑛, 𝑥𝑛,∆𝑥𝑛)

𝑔(𝑥𝑛)
, 𝑛 ≥ 𝑛0. 

Then , for all 𝑛 ≥ 𝑛0, we have 

∆𝜔𝑛 =
∆(𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛))

𝑔(𝑥𝑛+1)
− 𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)

∆(𝑔(𝑥𝑛))

𝑔(𝑥𝑛)𝑔(𝑥𝑛+1)
. 

This and (E) imply 

∆𝜔𝑛 = −𝜑(1, 𝜔𝑛+1)𝑞𝑛 − 𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)
𝑔1(𝑥𝑛+1,𝑥𝑛)(∆𝑥𝑛)𝛿

𝑔(𝑥𝑛)𝑔(𝑥𝑛+1)
. 

Hence, for all 𝑛 ≥ 𝑛0, we obtain 

∆𝜔𝑛 ≤ −𝜑(1, 𝜔𝑛+1)𝑞𝑛. 
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Or 

𝜑(1, 𝜔𝑛+1)𝑞𝑛  ≤ −∆𝜔𝑛, 𝑛 ≥ 𝑛0. 

Dividing this inequality by𝜑(1, 𝜔𝑛+1) > 0, We obtain 

𝑞𝑛 ≤ −
∆𝜔𝑛

𝜑(1, 𝜔𝑛+1)
, 𝑛 ≥ 𝑛0.                                                                              (2.1) 

Summing (2.1) from 𝑛0 to 𝑛 − 1, we have 

∑ 𝑞𝑚 ≤

𝑛−1

𝑚=𝑛0

− ∑
∆𝜔𝑙

𝐹(𝜔𝑙+1)
, where   𝐹(𝜔𝑛) = 𝜑(1, 𝜔𝑛).                   (2.2)

𝑛−1

𝑙=𝑛0

 

Define 𝛿 (𝑡) = 𝜔𝑙 + (𝑡 − 𝑙) ∆𝜔𝑙, 𝑡 ∈ [𝑙, 𝑙 + 1]. Then we have one of the following two cases 

Case (1): If ∆𝜔𝑙 ≥ 0, 𝑡ℎ𝑒𝑛 𝜔𝑙 ≤  𝛿(𝑡) ≤ 𝜔𝑙+1. Thus,in view of the definition of the function𝜑,we 

get 

∆𝜔𝑙

𝐹(𝜔𝑙)
≤

𝛿′(𝑡)

𝐹 (𝛿(𝑡))
≤

∆𝜔𝑙

𝐹(𝜔𝑙+1)
.                                                                          (2.3) 

Case (2): If ∆𝜔𝑙 ≤ 0, 𝑡ℎ𝑒𝑛 𝜔𝑙+1 ≤  𝛿(𝑡) ≤ 𝜔𝑙 . So we can directly obtain (2.3). 

Now, by (2.2) and (2.3), we get 

∑ 𝑞𝑚 ≤

𝑛−1

𝑚=𝑛0

− ∫
𝑑(𝛿(𝑡))

𝐹 (𝛿(𝑡))
= − ∫

𝑑𝑢

𝜑(1, 𝑢)
= −[Φ(𝛿(𝑛)) − Φ(𝛿(𝑛0))]

𝛿(𝑛)

𝛿(𝑛0)

𝑛

𝑛0

 

≤  𝑐1 + Φ(𝛿(𝑛0)) = 𝑐1 + Φ(𝜔𝑛0).                                                                    (2.4) 

Taking the limit superior on both sides for (2.4), we obtain 

lim
𝑡→∞

∑ 𝑞𝑖 < ∞,

𝑛−1

𝑖=𝑛0

 

Which contradicts (1.2). Hence, the proof is completed. 

Example 2.1: Consider  the  difference equation 
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∆((𝑛2 + 𝑥𝑛
2 − 4𝑥𝑛∆𝑥𝑛 + 4(∆𝑥𝑛)2)∆𝑥𝑛) + (1 + 2(−1)𝑛)𝜑(𝑢, 𝑣) = 0, 𝑛 ≥ 1.    (2.5) 

Here, 𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛) = (𝑛2 + 𝑥𝑛
2 − 4𝑥𝑛∆𝑥𝑛 + 4(∆𝑥𝑛)2)∆𝑥𝑛, 𝑞𝑛 = 1 + 2(−1)𝑛, 

And 𝜑(𝑢, 𝑣) = 𝑢𝑒−
𝑣

𝑢, where 𝑢 = 𝑔(𝑥𝑛+1) = 𝑥𝑛+1
3 ,and 

𝑣 = ((𝑛 + 1)2 + 𝑥𝑛+1
2 − 4𝑥𝑛+1∆𝑥𝑛+1 + 4(∆𝑥𝑛+1)2)∆𝑥𝑛+1. 

All conditions of Theorem 2.1 are satisfied, and hence, all solutions of equation (2.5) are 

oscillatory. 

Note that the Results of E.M. Elabbasy and sh. R. Elzeiny [5] cannot be applied to (2.5). 

Theorem 2.2: Assume that 𝑘(𝑛, 𝑥, 𝑦) ≥ 𝑏𝑦𝑟𝑛 ∀ 𝑦 ∈ ℝ and for some constant 𝑏 > 0. Furthermore, 

suppose that 

lim
|𝜔|→∞

𝑖𝑛𝑓𝜑 (1, 𝜔) = 𝑐 > 0,                                                                       (2.6) 

∫
𝑑𝑢

𝑔(𝑢)
< ∞∀𝜀 > 0,                                                                                  (2.7)

±𝜀

0

 

lim
𝑛→∞

sup ∑
1

𝑟𝑚

𝑛−1

𝑚=𝑛0

< ∞,                                                                                (2.8) 

And 

lim
𝑛→∞

sup ∑ (
1

𝑟𝑚
( ∑ 𝑞𝑖

𝑚−1

𝑖=𝑛0

)) =

𝑛−1

𝑚=𝑛0

∞                                                          (2.9) 

Then every solution of equation (E) oscillates. 

Proof: Suppose to the contrary that {𝑥𝑛} is a nonoscillatory solution of (E). 

Without loss of generality, we may assume that {𝑥𝑛} is an eventually positive solution of (E) such 

that 𝑥𝑛 > 0, 𝑛 ≥ 𝑛0. Define the sequence  {𝜔𝑛} as in the proof of the pervi- ous theorem. 

Following the same procedures, we get of Theorem (2.1). Now, we have one of the fol- lowing two 

cases: 

Case (1): If ∆𝜔𝑛 ≥ 0, 𝑡ℎ𝑒𝑛 𝜔𝑛+1 ≥ 𝜔𝑛 ≥ 𝜔𝑛0
. 
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In view of the definition of the function 𝜑, and the condition (2.6), we get 

−
∆𝜔𝑛

𝐹(𝜔𝑛+1)
≤  −

∆𝜔𝑛

𝐹 (𝜔𝑛0)
, 𝑛 ≥ 𝑛0.                                                            (2.10) 

Case (2): If ∆𝜔𝑙 ≤ 0, 𝑡ℎ𝑒𝑛 𝜔𝑛+1 ≤ 𝜔𝑛 ≤ 𝜔𝑛0. So, by the definition of the function 𝜑, and the 

condition (2.6) we can directly obtain (2.10). Now, by (2.1) and (2.10), we get 

∑ 𝑞𝑙 ≤ −
1

𝐹(𝜔𝑛0)
∑ ∆𝜔𝑙.

𝑛−1

𝑙=𝑛0

𝑛−1

𝑙=𝑛0

 

Then, for all 𝑛 ≥ 𝑛0, we have 

∑ 𝑞𝑙 ≤  −
1

𝑐

𝑛−1

𝑙=𝑛0

(𝜔𝑛 − 𝜔𝑛𝑜), 𝑤ℎ𝑒𝑟𝑒 𝐹(𝜔𝑛0) = 𝑐 > 0. 

Hence, for all 𝑛 ≥ 𝑛0, we obtain 

𝜔𝑛

𝑐
≤

𝜔𝑛𝑜

𝑐
− ∑ 𝑞𝑙 = 𝑐2 − ∑ 𝑞𝑙 ,

𝑛−1

𝑙=𝑛0

 𝑤ℎ𝑟𝑒 𝑐2 =
𝜔𝑛0

𝑐
.

𝑛−1

𝑙=𝑛0

 

Then, 

𝑐−1
𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)

𝑔(𝑥𝑛)
− 𝑐2 ≤ − ∑ 𝑞𝑙.

𝑛−1

𝑙=𝑛0

 

Hence, for all 𝑛 ≥ 𝑛0, we obtain 

𝑏

𝑐

∆𝑥𝑛

𝑔 (𝑥𝑛)
−

𝑐2

𝑟𝑛
≤ −

1

𝑟𝑛
∑ 𝑞𝑙.

𝑛−1

𝑙=𝑛0

 

Summing the above inequality from 𝑛0 to 𝑛 − 1, we have 

𝑐3 ∑
∆𝑥𝑙

𝑔 (𝑥𝑙)

𝑛−1

𝑙=𝑛0

− 𝑐2 ∑
1

𝑟𝑙
≤ − ∑ (

1

𝑟𝑙
∑ 𝑞𝑚)

𝑙−1

𝑚=𝑛0

, where𝑐3 =
𝑏

𝑐
.             (2.11)

𝑛−1

𝑙=𝑛0

𝑛−1

𝑙=𝑛0

 

Define 𝛿(𝑡) = 𝑥𝑙 + (𝑡 − 𝑙)∆𝑥𝑙, 𝑡 ∈ [𝑙, 𝑙 + 1]. Then we have one of the following two cases: 
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Case (1): If ∆𝑥𝑙 ≥ 0, then 𝑥𝑙 ≤ 𝛿(𝑡) ≤ 𝑥𝑙+1. Thus, in view of the definition of the function g, we 

get 

∆𝑥𝑙

𝑔 (𝑥𝑙)
≥

𝛿′(𝑡)

𝑔(𝛿(𝑡))
≥

∆𝑥𝑙

𝑔 (𝑥𝑙+1)
 .             (2.12) 

Case (2) : If ∆𝑥𝑙 ≤ 0, then𝑥𝑙+1 ≤ 𝛿 (𝑡) ≤ 𝑥𝑙 . So we can directly obtain (2.12). 

Now, by (2.11) and (2.12), we get 

𝑐3 ∫ (
1

𝑔
) (𝛿(𝑡))𝑑(𝛿(𝑡)) ≤  𝑐2 ∑

1

𝑟𝑙
− ∑ (

1

𝑟𝑙
∑ 𝑞𝑚

𝑙−1

𝑚=𝑛0

𝑛−1

𝑙=𝑛0

).

𝑛−1

𝑙=𝑛0

𝑛

𝑛0

 

Then, for all 𝑛 ≥ 𝑛0, we obtain 

𝑐3 ∫
𝑑𝑢

𝑔(𝑢)
≤ 𝑐2 ∑

1

𝑟𝑙
− ∑ (

1

𝑟𝑙
∑ 𝑞𝑚

𝑙−1

𝑚=𝑛0

𝑛−1

𝑙=𝑛0

),

𝑛−1

𝑙=𝑛0

𝛿(𝑛)

𝛿(𝑛0)

 

Which implies that 

∫
𝑑𝑢

𝑔(𝑢)
→ −∞ 𝑎𝑠 𝑛 → ∞

𝛿(𝑛)

𝛿(𝑛0)

. 

Now, if 𝛿(𝑛) ≥ 𝛿(𝑛0) for large n, then∫
𝑑𝑢

𝑔(𝑢)
≥ 0,

𝛿(𝑛)

𝛿(𝑛0
 

Which a contradiction. Hence, for large 𝑛, 𝛿(𝑛) ≤ 𝛿(𝑛0), 𝑠𝑜 

− ∫
𝑑𝑢

𝑔(𝑢)
≥ − ∫

𝑑𝑢

𝑔(𝑢)

𝛿(𝑛0)

0

> −∞,

𝛿(𝑛0)

𝛿(𝑛)

 

Which is again a contradiction. This completes the proof of Theorem 2.2. 

Example 2.2 : Consider the difference equation 

∆ ((
1

𝑛2
+ 𝑥𝑛

2 − 6𝑥𝑛∆𝑥𝑛 + 9(∆𝑥𝑛)2) 𝑒∆𝑥𝑛∆𝑥𝑛) + (2 + 3(−1)𝑛)𝜑(𝑢, 𝑣) = 0, 𝑛 ≥ 1. (2.13) 

Here, 𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛) = (
1

𝑛2 + 𝑥𝑛
2 − 6𝑥𝑛∆𝑥𝑛 + 9(∆𝑥𝑛)2) 𝑒∆𝑥𝑛 ∆𝑥𝑛 ≥

1

𝑛2 ∆𝑥𝑛, 
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then (𝑏 = 1, and𝑟𝑛 =
1

𝑛2) , 𝑞𝑛 = 2 + 3(−1)𝑛, and 𝜑 (𝑢, 𝑣) = 𝑢(1 + 𝑒
−𝑣

𝑢 ), 

where 𝑢 = 𝑔(𝑥𝑛+1) = 𝑥𝑛+1
5 , and 𝑣 = (

1

(𝑛+1)2
+ 𝑥𝑛+1

2 − 6𝑥𝑛+1∆𝑥𝑛+1 + 9(∆𝑥𝑛+1)2) 𝑒∆𝑥𝑛+1∆𝑥𝑛+1. 

All conditions of Theorem 2.2 are satisfied, and hence, all solutions of equation (2.13) are 

oscillatory. 

Note that the Results of E. M.Elabbasy and Sh. R. Elzeiny [5] cannot be applied to (2.13). 

In the following, we state and prove some lemmas which will be needed later on. 

Lemma 2.1: Assume that there exist positive integers 𝑁0, 𝑁, 𝑁 ≥  𝑁0 such that (1.3) holds. 

Then there exist an integer 𝑁1 ≥ 𝑁 such that 

∑ 𝑞𝑖  ≥ 0∀ 𝑛 ≥ 𝑁1.                                                                                 (2.14)

𝑛

𝑖=𝑁1

 

The proof of the above Lemma can be found in [7,Lemma 2.1]. 

Lemma 2.2: Assume that (1.3) holds, 𝑘(𝑛, 𝑥, 𝑦) ≥ 𝑏𝑦𝑟𝑛∀𝑦 ∈ ℝ and for some constant 𝑏 > 0, and 

𝜑(𝑢, 𝑣) = 𝑢 in equation (E). Furthemore, suppose that 

∑ (
1

𝑟𝑛
) = ∞.                                                                                                (2.15)

∞

𝑛=0

 

If {𝑥𝑛} is a non-oscillatory solution of equation (E) such that 𝑥𝑛 > 0 for all𝑛 ≥ 𝑁0, then there 

exists an integer 𝑁 ≥ 𝑁0 such that ∆𝑥𝑛 > 0 for all 𝑛 ≥ 𝑁. 

Proof: If not, assume first that ∆𝑥𝑛 < 0 for all large 𝑛, say 𝑛 ≥ 𝑁 ≥ 𝑁0. 

Without loss of generality, we may assume that (1.3) holds for 𝑛 ≥ 𝑁 and 𝑞𝑁 ≥ 0. 

Define 

𝑄𝑛 = ∑ 𝑞𝑙for 𝑛 ≥ 𝑁  and𝑄𝑁−1 = 0.

𝑛

𝑙=𝑁

                                        (2.16) 

Then, we have, 
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∑ 𝑞𝑙𝑔 (𝑥𝑙+1) = ∑ 𝑔

𝑛

𝑙=𝑁

(𝑥𝑙+1)∆𝑄𝑙−1 = ∑[∆(𝑔(𝑥𝑙+1)𝑄𝑙−1) − 𝑄𝑙∆𝑔(𝑥𝑙+1)]

𝑛

𝑙=𝑁

𝑛

𝑙=𝑁

 

= 𝑔(𝑥𝑛+2)𝑄𝑛 − 𝑔(𝑥𝑁+1)𝑄𝑁−1 − ∑ 𝑄𝑙∆𝑔 (𝑥𝑙+1)

𝑛

𝑙=𝑁

 

= 𝑔(𝑥𝑛+2)𝑄𝑛 − ∑((𝑔(𝑥𝑙+2) − 𝑔(𝑥𝑙+1))𝑄𝑙)

𝑛

𝑙=𝑁

 

= 𝑔(𝑥𝑛+2)𝑄𝑛 − ∑(𝑔1(𝑥𝑙+2, 𝑥𝑙+1)∆𝑥𝑙+1𝑄𝑙) ≥ 0.

𝑛

𝑙=𝑁

 

From equation (E), therefore 

∑ ∆(𝑘(𝑙, 𝑥𝑙 , ∆𝑥𝑙)) ≤ 0.

𝑛

𝑙=𝑁

 

Hence, 

𝑘(𝑛 + 1, 𝑥𝑛+1, ∆𝑥𝑛+1) ≤ 𝑘(𝑁, 𝑥𝑁 , ∆𝑥𝑁) 

<   0, 

since  

𝑘(𝑛 + 1, 𝑥𝑛+1, ∆𝑥𝑛+1) ≥ 𝑏𝑟𝑛+1∆𝑥𝑛+1. 

Then , 

∆𝑥𝑛+1 ≤
𝑐4

𝑟𝑛+1
< 0, 𝑐4 =

𝑘(𝑁, 𝑥𝑁 , ∆𝑥𝑁)

𝑏
< 0.                                      (2.17) 

Summing (2.17) from N to 𝑛 − 1, we obtain 

𝑥𝑛+1 − 𝑥𝑁 < 𝑐4 ∑
1

𝑟𝑙

𝑛

𝑙=𝑁+1

 

Then , we get 

𝑥𝑛+1 → −∞ 𝑎𝑠 𝑛 → ∞,which a contradiction. 
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Next, assume that ∆𝑥𝑛 is oscillatory for 𝑛 ≥ 𝑁1 ≥ 𝑁 ≥ 𝑁0. Then there exists a subsequence 

{𝑛𝑘}𝑘=1
∞  withlim𝑘→∞ n𝑘 = ∞ and such that∆𝑥𝑛𝑘

= 0, 𝑘 = 1,2,3 …. . 

Letting 

𝜔𝑛 =
𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)

𝑔(𝑥𝑛)
, 𝑛 ≥ 𝑁1. 

Then, for all 𝑛 ≥ 𝑁1,we obtain 

∆𝜔𝑛 =
∆(𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛))

𝑔(𝑥𝑛+1)
−

𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)∆𝑔(𝑥𝑛)

𝑔(𝑥𝑛)𝑔(𝑥𝑛+1)
 

=
−𝑞𝑛 𝑔(𝑥𝑛+1)

𝑔(𝑥𝑛+1)
−

𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)𝑔1(𝑥𝑛+1, 𝑥𝑛)(∆𝑥𝑛)𝛿

𝑔(𝑥𝑛)𝑔(𝑥𝑛+1)
 

≤  −𝑞𝑛, 𝑛 ≥ 𝑁1. 

Then, 

𝑞𝑛 ≤ −∆𝜔𝑛, 𝑛 ≥ 𝑁1. 

Summing the above inequality from𝑛1 to 𝑛𝑘 − 1, we have 

∑ 𝑞𝑙 ≤ −𝜔𝑛𝑘
+ 𝜔𝑛1

= 0,

𝑛𝑘−1

𝑙=𝑛1

 

Which contradicts (2.14). Hence  ∆𝜔𝑛 > 0 for all𝑛 ≥ 𝑁1. 

Theorem 2.3 : Assume that (1.3) and (2.15) hold, 𝑘(𝑛, 𝑥, 𝑦) ≥ 𝑏𝑦𝑟𝑛 ∀ 𝑦 ∈  ℝ and for some 

constant 𝑏 > 0, and 𝜑(𝑢, 𝑣) = 𝑢 in equation (E). Furthermore, assume that there exists 𝜆 ≥ 1 such 

that 

lim
𝑚→∞

𝑠𝑢𝑝
1

𝑚𝜆
∑ (𝑚 − 𝑛)𝜆

𝑚−1

𝑛=𝑛0

𝑞𝑛 = ∞.                                                      (2.18) 

Then every solution of Equation (E) oscillates. 

Proof: suppose to the contrary that {𝑥𝑛} is a non oscillatory solution of (E). 
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Without loss of generality, we may assume that  {𝑥𝑛} is an eventually positive solution of (E), such 

that  𝑥𝑛 > 0 for all large n. In view of lemma 2.2, we see that, there is some 𝑛1 ≥ 𝑛0 such that 

𝑥𝑛 > 0, ∆𝑥𝑛 > 0, 𝑛 ≥ 𝑛1. 

Define the sequence {𝜔𝑛} by 

𝜔𝑛 =
𝑘(𝑛,𝑥𝑛,∆𝑥𝑛)

𝑔(𝑥𝑛)
, 𝑛 ≥ 𝑛1, then 𝜔𝑛 > 0 and 𝑞𝑛 ≤ −∆𝜔𝑛. 

Hence,  

∑ (𝑚 − 𝑛)𝜆𝑞𝑛 ≤ − ∑ (𝑚 − 𝑛)𝜆 ∆𝜔𝑛

𝑚−1

𝑛=𝑛1

.                (2.19)

𝑚−1

𝑛=𝑛1

 

But 

− ∑ (𝑚 − 𝑛)𝜆∆𝜔𝑛 = (𝑚 − 𝑛1)𝜆𝜔𝑛1
− ∑ 𝜔𝑛+1[(𝑚 − 𝑛)𝜆 − (𝑚 − 𝑛 − 1)𝜆]

𝑚−1

𝑛=𝑛1

.

𝑚−1

𝑛=𝑛1

 

By means of the well-known inequality [8] 

𝑥𝛽 − 𝑦𝛽 ≥ 𝛽𝑦𝛽−1(𝑥 − 𝑦) for all 𝑥 ≥ 𝑦 > 0 and 𝛽 ≥ 1, 

We have, 

− ∑
(𝑚 − 𝑛)𝜆∆𝜔𝑛 ≤ (𝑚 − 𝑛1)𝜆𝜔𝑛1

− ∑ 𝜆𝜔𝑛+1(𝑚 − 𝑛 − 1)𝜆−1

𝑚−1

𝑛=𝑛1

               ≤ (𝑚 − 𝑛1)𝜆𝜔𝑛1
.                                                                    (2.20) 

𝑚−1

𝑛=𝑛1

                         

Then by (2.19) and (2.20), we get 

∑
(𝑚 − 𝑛)𝜆𝑞𝑛 ≤ (𝑚 − 𝑛1)𝜆𝜔𝑛1

,
𝑚−1

𝑛=𝑛1

 

Which implies that  

1

𝑚𝜆
∑ (𝑚 − 𝑛)𝜆𝑞𝑛 ≤ (

𝑚 − 𝑛1

𝑚
)

𝜆

𝜔𝑛1
.

𝑚−1

𝑛=𝑛1
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Hence, 

lim
𝑚→∞

𝑠𝑢𝑝
1

𝑚𝜆
∑

(𝑚 − 𝑛)𝜆𝑞𝑛 < ∞,
𝑚−1

𝑛=𝑛1

 

Which is contradiction to (2.18). The  proof  is completed. 

Theorem 2.4 : Assume that (1.3) and (2.15) hold, 𝑘(𝑛, 𝑥, 𝑦) ≥ 𝑏𝑦𝑟𝑛 ∀ 𝑦 ∈ ℝ and for some 

constant 𝑏 > 0, and 𝜑(𝑢, 𝑣) = 𝑢 in equation (E). Furthermore, assume that there exists a positive 

sequence {𝑝𝑛}𝑛=0
∞  such that ∆𝑃𝑛 ≤ 0 for all𝑛 ≥ 𝑛0 > 0, and 

∑ 𝜌𝑛+1𝑞𝑛 = ∞,∞
𝑛=𝑛0

  for some 𝑛0 > 0,                                          (2.21) 

Then every solution of equation (E) oscillates. 

Proof: Suppose to the contrary that {𝑥𝑛} is a nonoscillatory solution of (E). 

Without loss of generality, we may assume that {𝑥𝑛} is an eventually positive solution of (E) such 

that 𝑥𝑛 > 0 for all 𝑛 ≥ 𝑛0 > 0. Then, 𝑔(𝑥𝑛+1) > 0 for all 𝑛 ≥ 𝑛0 > 0. 

Then, from Lemma 2.2, there exists an integer 𝑛1 ≥ 𝑛0, sufficiently large, so that 

∆𝑥𝑛 > 0 forall 𝑛 ≥ 𝑛1. 

Now, 

∆ (
𝜌𝑛𝑘(𝑛, 𝑥𝑛 , ∆𝑥𝑛)

𝑔(𝑥𝑛)
) =

𝜌𝑛+1

𝑔(𝑥𝑛+1)
∆(𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)) + 𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)∆ (

𝜌𝑛

𝑔(𝑥𝑛)
) 

        ≤  −𝜌𝑛+1𝑞𝑛 +
𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)∆𝜌𝑛

𝑔(𝑥𝑛+1)
−

𝜌𝑛𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)∆(𝑔(𝑥𝑛))

𝑔(𝑥𝑛)𝑔(𝑥𝑛+1)
 

≤  −𝜌𝑛+1𝑞𝑛 +
𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)∆𝜌𝑛

𝑔(𝑥𝑛+1)
−

𝜌𝑛𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)∆𝑥𝑛

𝑔(𝑥𝑛)𝑔(𝑥𝑛+1)
 

                                       ≤  −𝜌𝑛+1𝑞𝑛,   forall 𝑛 ≥ 𝑛1. 

Hence , 

𝜌𝑛+1𝑞𝑛 ≤ ∆ (
𝜌𝑛𝑘(𝑛,𝑥𝑛,∆𝑥𝑛)

𝑔(𝑥𝑛)
) . 

Summing the above inequality from 𝑛1 to 𝑛 − 1, we obtain 
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∑ 𝜌𝑚+1𝑞𝑚 ≤
𝜌𝑛1

𝑘(𝑛1, 𝑥𝑛1
, ∆𝑥𝑛1

)

𝑔(𝑥𝑛1
)

−
𝜌𝑛𝑘(𝑛, 𝑥𝑛, ∆𝑥𝑛)

𝑔(𝑥𝑛)

𝑛−1

𝑚=𝑛1

 

≤
𝜌𝑛1

𝑘(𝑛1, 𝑥𝑛1
, ∆𝑥𝑛1

)

𝑔(𝑥𝑛1
)

, 

which is contrary to (2.21). The proof is completed. 
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