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Abstract  

The silicon sensor is more than 25 years old, though the term ‘silicon sensors’ had not yet been coined when the 

first devises were conceived. The very first silicon sensors used silicon diodes for the detection of light. These 

photodiodes were normal diodes which had the lacquer on their transparent packages scratched off. Around the 

same time it became known that temperature could be measured by analyzing the temperature sensitivity of the 

forward current of a simple diode. This paper establishes the Finite Element Method (FEM) model of a 

practical silicon beam resonator attached to a diaphragm used for measuring pressure. In this paper 

presents two location error models. Analyze, calculate, and investigate the relationship between the basic 

natural frequency of the beam resonator and the measured pressure for two error models are discussed. 
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1. Introduction 
 

During the past decade, many experts in sensor technology have noticed the rapid development 

in silicon resonant sensors. The silicon microstructure resonant sensors are noted for the 

advantages of a generalized resonant sensor, such as direct digital output (without A/D 

conversion), long-term stability, low hysteretics and high repeatability. Other advantages of 

silicon material are excellent mechanical properties; high strength; free from mechanical 

hysteretics; suit ability to batch processing at low cost; and the compatibility of mechanical and 

electrical properties. Meanwhile, the dynamic characteristics of silicon resonant sensors are 

much better than those of conventional ones, due to their high working frequency [1]. In 

addition, the temperature characteristics of silicon resonant sensors are much better than those of 

another important silicon sensor, the piezo resistive sensor. It is much easier to interface them 

with a microprocessor to develop smart or ‘intelligent’ sensors or sensor systems due to their 

unique operating principle based on the relationship between the natural frequency and measured 

signal instead of the silicon piezo resistive effect. Recently, it has been reported that some 

prototypes, with different structure and configurations, and even few batch products of silicon 

resonant sensors have come into being for measuring pressure, differential pressure or force. 
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They have been developed and manufactured in Japan, USA, Netherlands and Britain. Although 

the properties of these silicon resonant sensors have not reached the designed criteria, they could 

be used widely in many technical fields in the near future. 

 
Figure 1. Sensing structure of the sensor. 

 

Figure 1 shows the structure of a silicon resonant sensor for measuring pressure. The preliminary 

sensing unit is a square diaphragm. The measured pressure acts perpendicularly to the lower 

surface of the diaphragm and yields the stress. T]he final sensing unit is a beam, which is 

attached 1o the upper surface of the diaphragm. Moreover, the thickness of the beam h should be 

much less than the thickness of the diaphragm H, and the width of the beam should be less than 

the half length of the diaphragm A. Based on the above structural feature, an appropriate initial 

stress is applied along the axial direction of the beam, which is almost identical with the stress of 

the square diaphragm at the same position. Thus the natural frequency of the beam is varied with 

the applied pressure which acts on the square diaphragm. Therefore, the pressure will be 

measured via the change in natural frequency of the beam. In addition, the beam resonator has a 

very high Q factor because it can be packaged within a vacuum housing. 

 
Figure 2. Ideal locations of the beam at the diaphragm. 
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Figure 3. Error model 1 of beam's location at the diaphragm 

 

Figure 2 shows the ideal location scheme of the beam. Figure 3 shows the location error model 1 

within the positive stress range, while Figure 4 shows the location error model 2 within the 

negative stress range. It is certain that the frequency-pressure relationship varies with the 

deviation B in the x-axis, deviation D in the y-axis and the angular deviation a relative to its  

ideal location for the above error cases. In order to improve the exchangeability of the sensor, it 

is necessary to investigate the influence laws of the above deviations on the frequency-pressure 

relationship of the beam resonator. The objective of this paper is to study the above problems in 

order to obtain some directions during developing the silicon resonator sensors by making use of 

a finite element model (FEM). 

 
Figure 4. Error model 2 of beam's location at the diaphragm 

 

Stresses on the upper surface of the square diaphragm 

According to the structural feature and the design demands for the sensor, the square diaphragm 

is within the range of a small deflection. Then the differential equation can be written as follows: 
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Where  W (x,y(    Displacement of the square diaphragm under the applied pressure P, and Ds  

The flexural rigidity of the square diaphragm. 
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According to the built-in edge of the square diaphragm, its displacement can be assumed as 

follows: 
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Where Wmax    Ratio between the maximum normal displacement and the thickness of the square 

diaphragm, and A, H  Half-length and thickness of the square diaphragm. 

Substituting Eq. (2) into Eq. (1), the displacement W(x,y) can be obtained.  Then stresses on the 

upper surface of the square diaphragm can be obtained. 
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Where  σx(x,y), σy(x,y) Stresses of the square diaphragm. 

 

Finite element model of the beam 
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Figure 5. Mathematical model of the beam 

 

Figure 5 shows the mathematical model of the beam. The vibrating displacements of the beam at 

an arbitrary point are as follows: 
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Where u (s,z,t)-w (s,t(  Axial and normal vibrating displacements of the beam in Cartesian 

coordinate of the beam, and s,z Axial and normal coordinates of the beam in Cartesian 

coordinate of the beam. 

Energy expressions of the beam resonator are as follows  

The potential energy 
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Where   U  Potential energy of the beam ,and S  is the integrated length of the beam. 

The kinetic energy 
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Where T   Kinetic energy of the beam, and     density of the sensing structure. 

In addition, the initial potential energy of the beam, which is caused by  s s0 ( ) , is 
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From Fig(1) and   equation (3), according to the above analyses, 
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Where σs
0
(s)   Initial axial stress of the beam. 

  The following relation for the error cases: 
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Then the total potential energy of the beam is 

                                      
U U UT   0                                                                (10) 

Where U0  Initial potential energy of the beam, which is caused byσs
0
(s) ,and UT Total potential 

energy of the beam. 

In Eq. (7), if as~ is a constant aft, the analytic relationship between the basic natural frequency 

and the initial axial stress can be directly obtained: 
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Where ω[rad/s],w(s( Natural frequency and its corresponding vibrating shape along the axial 

direction of the beam. 

However, from Eqs. (3), (8) and (9), 
 ss

0
is varying. Therefore, The the finite element 

equation of the beam resonator can be written  as follows:  

                                      
 2 0 K M a

                                                         (12) 

where K-assembly stiffness Matrix, M-assembly Mass Matrix, a the assembly nodal vector,  

consisting of all aj. 

For the actual structural features of Fig. 1, the boundary conditions of the beam are as follows 
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From  Eqs. (12), (13), natural frequencies and the corresponding vibrating shapes of the beam 

resonator can be obtained. 

 

 

2. Calculations and Simulations 

 

In this work, the main investigate the detailed vibration shape of the beam resonator 

simultaneously. The sensor is made of silicon, E =
11103.1  Pa,  

31033.2   kg/m
3
,   

=0.17. Moreover, the total element number of the beam N is 19 for FEM calculation. 
The half-length and thickness of the square diaphragm are A=1mm and H=0.1 mm, respectively. 

In addition, the width and thickness of the beam are b=50 µm and h=5µm. 

Define, Δƒ(B, D, a) [hz] = Δƒ (P, Β, D, a) –f (0, 0, 0, 0) as the variation of the basic natural 

frequency of the beam within (0, p), with the x-axis deviation Β. y-axis deviation D and the 

angular deviation a relative to its ideal location. 

Define β(B, D, a)=[Δf(B, D, a,) -Δf(0, 0, 0)]/Δf(0, 0, 0)] as the relative variation of the 

basic natural frequency variation of the beam within (0, P), with the x-axis deviation B. y-axis 

deviation D and the angular deviation a relative to its ideal location. 

 

Table 1. The relative variation β(B, D, 0) of the frequency variation of the beam. 

 

D µm 
Β µm 

0 2 4 6 

0 0.001 0.001 0.001 0.001 

2 0.002 0.001 0.001 0.001 

4 0 0.001 0.001 0.001 

6 0.001 0.001 0.001 0.001 

 

Table 2. The relative variation β(B, D, 3) of the frequency variation of the beam. 

 

D µm 
Β µm 

0 2 4 6 

0 0.002 0.002 0.001 0.001 

2 0.001 0.001 0.002 0.002 

4 0.001 0.001 0.001 0 

6 0.001 0.001 0.001 0.001 
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Table 3. The relative variation β(B, D, -3) of the frequency variation of the beam. 

 

D µm 
Β µm 

0 2 4 6 

0 0.001 0.002 0.001 0.001 

2 0 0.002 0.001 0.001 

4 0.001 0.002 0 0.001 

6 0.002 0.001 0.002 0.001 

 

Table's 1~3 shows β(B, D, 0),  (a= 0deg), β(B, D, 3 ) (a=+3deg) and β(B, D, -3) (a =-3deg.), 

within (0, 10
6
)pa.  as the beam is located at different positions, i. e., with different ,x-axis 

deviation B, y-axis deviation D and the angular deviation a relative to its ideal location on the 

square diaphragm. The design ideal location is ( -300, +300) µm (or L=600µm) within the 

positive stress range of the beam, and the beam's axial direction is along the x- axis of the square 

diaphragm, which corresponds to B = 0, D=0, a=0. In addition, ƒ(0, 0, 0)= 106648Hz. Δf(0, 0, 

0)=9924Hz. 

From Table's 1~3, the variation of the basic natural frequency of the beam, which is influenced 

by the deviation D, the deviation B, and the angular deviation a  of the beam relative to its ideal 

location, are almost the same within the positive stress range.  

Table's 4~6 shows β(B, D, 0),  (a= 0deg), β(B, D, 3 ) (a=+3deg) and β(B, D, -3) (a =3deg.), 

within (0, 10
6
)pa.  as the beam is located at different positions, i. e., with different ,x-axis 

deviation B, y-axis deviation D and the angular deviation a relative to its ideal location on the 

square diaphragm. The design ideal location is   ( +700, +1000) µm (or L=200µm) within the 

negative stress range of the beam, and the beam's axial direction is along the x- axis of the 

square diaphragm, which corresponds to B = 0, D=0, a=0. In addition, ƒ(0, 0, 0)= 426564Hz. 

Δf(0, 0, 0)=10475Hz. 

 

Table 4. The relative variation β(B, D, 0) of the frequency variation of the beam. 

 

D µm 
Β µm 

0 -2 -4 -6 

0 0 -0.005 -0.019 -0.025 

2 0 -0.006 -0.021 -0.025 

4 0.001 -0.006 -0.018 -0.026 

6 0.002 -0.005 -0.018 -0.025 

 

Table 5. The relative variation β(B, D, 3) of the frequency variation of the beam. 

 

D µm 
Β µm 

0 -2 -4 -6 

0 -0.001 -0.008 -0.021 -0.026 

2 -0.001 -0.011 -0.021 -0.026 

4 -0.001 -0.012 -0.017 -0.031 

6 -0.002 -0.013 -0.023 -0.029 
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Table 6. The relative variation β(B, D, -3) of the frequency variation of the beam. 

D µm 
Β µm 

0 -2 -4 -6 

0 -0.001 -0.008 -0.025 -0.030 

2 -0.001 -0.012 -0.025 -0.030 

4 -0.001 -0.012 -0.026 -0.030 

6 -0.002 -0.010 -0.025 -0.033 

 

From Table's 1~3, the variation of the basic natural frequency of the beam, which is influenced 

by the deviation D, the deviation B, and the angular deviation a  of the beam relative to its ideal 

location, within the negative stress range. Therefore, the y-axis deviation B should be reduced as 

much as possible. Comparing the above tables, it is obvious that locating the beam in the middle 

of the square diaphragm is much better than at the edge. 

 

4. Conclusions  
 

Based on the Finite Element Method model and analyses of the initial stresses applied to the 

beam resonator attached to a square diaphragm, this paper first calculates, analyzes and 

investigates the relationship between the basic natural frequency of the beam resonator and the 

measured pressure for two error models. An important result is obtained  it is necessary to 

monitor the processing accuracy in the x-axis, y-axis and the reference angle a relative to the 

ideal coordinate, within the positive stress range, while only in the x-axis within the negative 

stress range as the beam axial direction is along the x-axis of the square diaphragm. In addition, 

locating the beam in the middle of the square diaphragm is much better than at the edge. 
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