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Abstract 

One of the main questions is whether or not a sequence of polynomials pn(x)  that interpolate a continuous 

function f at n + 1 equally spaced points tends to f in the sup-norm? The answer is "no" in some cases. The 

main fact is that interpolant polynomials pn(x) of a function f converge at a rate determined by the 

smoothness of f: the pn(x)   converge rapidly to the function f if it is k-times  differentiable and converges 

exponentially if f is analytic. The polynomial interpolation depends on n but it also depends on the way in 

which the points are distributed. We determine conditions on the function f to ensure the convergence of the 

polynomials pn(x)  to the function f, as the continuity of the function is not enough. The question for analytic 

functions is answered using potential theory. Convergence and divergence rate of interpolants of analytic 

functions on the interval are investigated. We also study a generalized Runge phenomenon and find out how 

the location of the points and poles affect the convergence. 

 

Keywords: Polynomial interpolation, Lagrange polynomial, Chebyshev polynomial, Chebyshev points. 

 

 

1. Introduction 
 

Interpolation theory is one of the most important tools of numerical analysis. It is used in 

approximation theory, numerical differentiation, numerical integration and solving differential 

equations. The interpolating polynomial is the polynomial that passes through the given data 

values with degree less than the number of points. Polynomials are the simplest form of 

interpolation to work with, this is due to the ease of their differentiation and integration. The 

interpolating polynomial is the polynomial that passes through 𝑛 + 1  data points and whose 

degree is at most 𝑛 may give a good approximation for small 𝑛. However, interpolation at equally 
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spaced points does not always yield a good approximation, for example, due to the Runge 

phenomenon. Yet, interpolation at Chebyshev points leads to better results. Even better results can 

be obtained through interpolation in term of the Chebyshev polynomial. There are several different 

types of interpolation with certain merit and demerit. For example, the Lagrange polynomials 

interpolation formula is of a theoretical interest but in practice is not satisfactory. Instead, there are 

several attractive alternatives: the modified Lagrange and the barycentric formula. The barycentric 

formula is known to be a good method because of attractive features e.g. stability,  as shown by 

Higham [12].                                                                                                                          

Polynomial interpolation is the dominant for approximation and has some clear advantages. 

For instance, any continuous function on a given interval [𝑎, 𝑏] can be approximated by 

polynomials (𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚). But there are some disadvantages, as a high polynomial 

degree is generally needed for accuracy, which in some cases leads to divergence.  In fact, 

polynomial interpolants at evenly spaced points need to converge uniformly for continuous 

function as 𝑛 → ∞ even if the function is analytic [14], (see also a simple example.2) with the 

Runge phenomenon).  If we are able to choose the points of interpolation, then remedy is to 

interpolate using points that are clustered at the end of intervals, such as 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣  𝑝𝑜𝑖𝑛𝑡𝑠  [10]. 

If we cannot choose the points, then we have to use another approach.                                 

 

2. The Chebyshev polynomial 
 

The Chebyshev polynomial of the first kind of degree 𝑛 is defined as [4, 9]: 

𝑇𝑛(𝑥) = 𝑐𝑜𝑠(𝑛  𝑐𝑜𝑠−1 𝑥) = 𝑐𝑜𝑠 𝑛𝜃,                             (0.1) 

where 𝑥 = 𝑐𝑜𝑠𝜃, −1 ≤ 𝑥 ≤ 1,  0 ≤ 𝜃 ≤ 𝜋   and 𝑛 is nonnegative integer.  

The Chebyshev polynomials 𝑇𝑛(𝑥)  satisfy|𝑇𝑛(𝑥)| ≤ 1. This follows from the bound  |𝑐𝑜𝑠 𝜃| ≤ 1, 

thus                                                                                                                                                         

|𝑇𝑛+1(𝑥) −  𝑇𝑛−1(𝑥)|  ≤ 2 

The Chebyshev polynomial 𝑇𝑛(𝑥) of degree 𝑛 > 1  has 𝑛  zeros on the interval [−1, 1].  The zeros 

𝑥𝑗 are given by:                                                                                                                                      

𝑥𝑗 =
𝑐𝑜𝑠(2𝑗 − 1)𝜋

2𝑛
 ,    𝑗 = 1, … , 𝑛 

Moreover, the extrema (i.e. points 𝑥𝑗̃  such that  𝑇𝑛(𝑥𝑗̃) =      (−1)𝑗 are given by 

 

𝑥𝑗̃ =  
𝑐𝑜𝑠 𝑗𝜋

𝑛
,    𝑗 = 1, … , 𝑛 

All roots are real and lie in the interval [−1, 1]. The extrema are preferable for interpolation in 

practical use because they include the boundary points. 
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Theorem.1 [9,15] : A function  𝑓 (𝑥)  on [−1, 1]  that satisfies the Lipschitz continuity 

condition  can be expanded as a Chebyshev series  

𝑓(𝑥) =  
𝑎0

2
+ ∑ 𝑎𝑘

∞

𝑘=1

 𝑇𝑘(𝑥),            (1.1) 

which converges uniformly and absolutely on [−1,1], where 

 

          𝑎𝑘 =
2

𝜋
  ∫

𝑓(𝑥)𝑇𝑘(𝑥)

√1 − 𝑥2

1

−1

                         (2.1)         

 

The Chebyshev polynomials have interesting properties that make them a very attractive tool to 

minimize the maximum error in uniform approximation. 

 

 

3. Barycentric Polynomial Interpolation 

 

Let  {𝑥𝑗}
𝑗=0

𝑛
 𝑛 + 1 distinct given points with associated values {𝑓𝑗}

𝑗=0

𝑛
 , which may or may not be 

values of a function  𝑓(𝑥):   𝑓𝑗 = 𝑓(𝑥𝑗)  𝑗 = 0, … , 𝑛.  Then there is a unique polynomial   𝑝𝑛(𝑥) of 

a degree ≤ 𝑛  such that  

𝑝𝑛(𝑥𝑗) =  𝑓(𝑥𝑗), 𝑗 = 1, … , 𝑛    

The polynomial 𝑝𝑛(𝑥)  is called the interpolating polynomial [10, 15] 

An interpolating polynomial can be constructed easily using the Lagrange formula 

𝑝𝑛(𝑥) =  ∑ 𝑓(𝑥𝑗)𝐿𝐽

𝑛

𝑗=0

(𝑥),                                           (3.2)   

where the Lagrange polynomial basis   𝐿𝐽 is 

𝐿𝐽(𝑥) =  ∏
𝑥 − 𝑥𝑘  

𝑥𝑗 −  𝑥𝑘
,   𝑘 = 0, … , 𝑛

𝑛

𝑘=0
𝑘≠𝑗

                   (4.2) 

𝐿𝐽 is the unique polynomial of degree 𝑛 that have the property  

𝐿𝐽(𝑥𝑘) =  𝛿𝑗𝑘 = {
1      𝑖𝑓  𝑗 = 𝑘
0   𝑖𝑓    𝑗 ≠ 𝑘

 

where 𝛿𝑗𝑘 is the Kronecker delta. 

The Lagrange interpolation formula is useful for theoretical interest but not appropriate in practice 

[10].  

The Lagrange formula (3.2) can be rewritten in a different and more attractive way.  Let us define: 
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𝐿(𝑥) =  ∏(𝑥 − 𝑥𝑘).                    

𝑛

𝑘=0

 

 

Its derivative is                                                                                                                                       

𝐿′(𝑥) =  ∑ ∏(𝑥 − 𝑥𝑘).                    

𝑛

𝑘=0
𝑘≠𝑗

𝑛

𝑗=0

 

Thus, when  𝐿′(𝑥)  is evaluated at an interpolation point  𝑥𝑗, there will be only one term not equal 

to zero and thus   𝐿′(𝑥)   is equal to 

𝐿′(𝑥𝑗) =  ∏(𝑥𝑗 − 𝑥𝑘).                   

𝑛

𝑘=0
𝑘≠𝑗

 

 

Hence, from  (4.2), 𝐿𝐽  becomes  

𝐿𝐽(𝑥) =  
𝐿(𝑥)

𝐿′(𝑥𝑗)(𝑥 − 𝑥𝑗)
.                      (5.2) 

If the weight is defined by 

𝑤𝑗 =  
1

∏ (𝑥𝑗 − 𝑥𝑘)𝑛
𝑘=0

=  
1

𝐿′(𝑥𝑗)
 

then  (4.2) can be written as 

𝐿𝐽(𝑥) = 𝐿(𝑥)
𝑤𝑗

(𝑥 −  𝑥𝑗)
 . 

Thus, ( 3.2) can be expressed  as 

𝑝𝑛(𝑥) =  ∑ 𝑤𝑗

𝑛

𝑗=0

𝑓𝑗   ∏(𝑥 − 𝑥𝑘).                    

𝑛

𝑘=0
𝑘≠𝑗

 

Therefore, the improved Lagrange formula is defined as: 

𝑝𝑛(𝑥) =  𝐿(𝑥) ∑ 𝑓𝑗

𝑛

𝑗=0

  
𝑤𝑗

(𝑥 −  𝑥𝑗)
                   (6.2) 

Note that the denominator of  𝐿𝐽(𝑥)  can be computed in advance because it is constant. Here, the 

coefficient of  𝑥𝑛  is 

∑ 𝑓𝑗

𝑛

𝑗=0

   ∏(𝑥𝑗 − 𝑥𝑘) =   ∑
𝑓𝑗

𝐿′(𝑥𝑗)

𝑛

𝑗=0

 .                 

𝑛

𝑘=0
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The formula (6.2)  is called the modified Lagrange formula or the first form of the barycentric 

interpolation formula and enjoys some advantages over the Lagrange formula [10].                  

We now arrive at the formula that leads to a better numerical computation. The barycentric 

formula can be obtained from the modified Lagrange formula (6.2)  [10]. The interpolation of  

𝑓𝑗 = 1   for all  𝑗 is the unique polynomial  𝑝𝑛(𝑥) = 1, which has zero degree. Hence, (6.2) implies 

that                                                                                                                                         

1 =  ∑ 𝐿𝐽

𝑛

𝑗=0

(𝑥) =  𝐿(𝑥) ∑
𝑤𝑗

(𝑥 −  𝑥𝑗)

𝑛

𝑗=0

                       (7.2) 

So                                                                                                                                                           

𝐿(𝑥) =  
1

∑
𝑤𝑗

(𝑥− 𝑥𝑗)
𝑛
𝑗=0

. 

By dividing (3.2)  by (7.2)  we get 

𝑝𝑛(𝑥) =  
∑ 𝑓(𝑥𝑗)𝐿𝐽

𝑛
𝑗=0 (𝑥)

∑ 𝐿𝐽
𝑛
𝑗=0 (𝑥)

 

Substituting (6.2) into the above and cancelling 𝐿(𝑥) leads to 

𝑝𝑛(𝑥) =  

∑ 𝑓(𝑥𝑗)
𝑤𝑗

(𝑥− 𝑥𝑗)

𝑛
𝑗=0

∑
𝑤𝑗

(𝑥− 𝑥𝑗)
𝑛
𝑗=0

                       (8.2) 

which is known as the barycentric formula. It is an a polynomial if the weights  𝑤𝑗 are nonzero and 

defined in a such a way that  

∑ 𝐿𝑗

𝑛

𝑗=0

=  𝐿(𝑥) ∑
𝑤𝑗

(𝑥 − 𝑥𝑗)

𝑛

𝑗=0

= 1. 

It was mentioned by Taylor in 1945 [1] for equally spaced points. Later, the formula was 

reconsidered by Salzer in [5] in 1972 for Chebyshev points. Furthermore, the formula was 

discussed in 2004 by Berrut and Trefethen [10]. Since then, the formula has become widely used 

for interpolation and opened up a wide field of research.                                                          

 

In some cases the weight  𝑤𝑗 can be computed analytically, for example in the case of equidistant 

interpolation points  𝑥𝑗 = 𝑎 + 𝑗ℎ, where ℎ =
𝑏−𝑎

𝑛
  by using  

𝑤𝑗 =  
1

∏ (𝑥𝑗 − 𝑥𝑘)𝑛
𝑘=0

=  
1

𝐿′(𝑥𝑗)
 

Then,                                                                                                                                                      
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∏(𝑥𝑗 − 𝑥𝑘) =  [∏(𝑥𝑗 − 𝑥𝑘)   

𝑗−1

𝑘=0

] [ ∏ (𝑥𝑗 − 𝑥𝑘)   

𝑛

𝑘=𝑗+1

]                   

𝑛

𝑘=0

 

∏(𝑥𝑗 − 𝑥𝑘) =  [ℎ𝑗 ∏(𝑗 − 𝑘)   

𝑗−1

𝑘=0

] [ℎ𝑛−𝑗 ∏ (𝑗 − 𝑘)   

𝑛

𝑘=𝑗+1

]

𝑛

𝑘=0

=   [ℎ𝑗 ∏ 𝑘  

𝑗

𝑘=0

] [(−1)𝑛−𝑗 ∏ 𝑘   

𝑛−𝑗

𝑘=1

]                  

                                         = (−1)𝑛−𝑗ℎ𝑛 (𝑗!) ((𝑛 − 𝑗)!). 

After some cancellation of a common factor, we have      

𝑤𝑗 =  (−1)𝑗  (
𝑛

𝑗
) 

 Chebyshev points are obtained by projecting equidistant points on the unit circle onto the 

interval [−1,1]: 

𝑥𝑗 =
𝑐𝑜𝑠(2𝑗 − 1)𝜋

2𝑛
 ,    𝑗 = 1, … , 𝑛 

These points are clustered at the ends of the interval. Here, after cancelling common factors that 

are independent of  𝑗,  the weights become 

 

𝑤𝑗 =    (−1)𝑗   
𝑠𝑖𝑛(2𝑗 − 1)𝜋

2𝑛
 ,    𝑗 = 1, … , 𝑛, 

and the interpolation formula becomes: 

𝑝𝑛(𝑥) =  

∑ 𝑓(𝑥𝑗)
(−1)𝑗  

𝑠𝑖𝑛(2𝑗−1)𝜋

2𝑛

(𝑥− 𝑥𝑗)

𝑛
𝑗=0

∑
(−1)𝑗  

𝑠𝑖𝑛(2𝑗−1)𝜋

2𝑛

(𝑥− 𝑥𝑗)
𝑛
𝑗=0

. 

Also, if the points are the Chebyshev extrema points  

𝑥𝑗 =  
𝑐𝑜𝑠 𝑗𝜋

𝑛
,    𝑗 = 1, … , 𝑛 

then the weights become  𝑤𝑗 =  (−1)𝑗𝛿𝑗 [10], where 

𝛿𝑗 = {
1

2
     𝑖𝑓  𝑗 = 0    𝑗 = 𝑛

1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 

For the interval [𝑎, 𝑏] the weights will be multiplied by 2𝑛(𝑏 − 𝑎)𝑛. 

Using the data 𝑓𝑗   at  𝑛 + 1 Chebyshev points 𝑥𝑗, the interpolant polynomials simplify to a formula 

by Salzer [5] 
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𝑝𝑛(𝑥) =  

∑ 𝑓(𝑥𝑗)
(−1)𝑗 

(𝑥− 𝑥𝑗)

𝑛
𝑗=0

∑
(−1)𝑗 

(𝑥− 𝑥𝑗)
𝑛
𝑗=0

. 

 

4. Main Result: Runge Phenomenon 

 

In many cases a high-order polynomial interpolation leads to a good approximation. However, 

as the following examples demonstrate, this is not true for all continuous functions on a finite 

interval [𝑎, 𝑏]. 

Example.1: Bernstein proved that for 𝑓(𝑥) =  |𝑥|, the interpolating polynomial 𝑝𝑛(𝑥) 

converges only at the points  𝑥 = −1, 0 𝑎𝑛𝑑 1 , where the points  1 and −1 are interpolation 

points satisfying  𝑝𝑛(1) =  𝑝𝑛(−1) = 1 .  For the point  0,  Natanson in  [2] proved that  

𝑙𝑖𝑚𝑛→∞ 𝑝𝑛(0) = 0 when  𝑛 is even but not for odd 𝑛.                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Polynomial interpolations of f(x) =  |x|  on [−1, 1] at equally spaced points n = 16 (left) and 

n = 13 (right).  

Moreover, if the function is infinitely differentiable but is not bounded or analytic, then the error 

may not be small as the number of interpolation points increases, unless the function is analytic in 

a larger complex region where its shape depends on the interpolation points.Runge's phenomenon 

shows that using equally spaced points can lead to a loss of accuracy in the interpolating 

polynomials.                                                                                                                          

Example.2: If the  function   𝑓(𝑥) =  
1

1+ 𝑥2
  on [−5,5]  is approximated at  𝑥𝑗 =  −5 + ℎ𝑗, where    

 ℎ =
10

𝑛
,  then the error becomes worse as the number of points increases (see Figure2).     
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This causes large oscillations near to the end of the interval, although convergence takes place in a 

smaller interval [−𝑎, 𝑎] 𝑤𝑖𝑡ℎ  a ≤3.63.  However, increasing the degree leads to good convergence 

in the middle of the interval. 

 The main reason for the divergence of the interpolating polynomial at equally spaced points is that 

the function is analytic for all x, but has poles at   𝑥 =  ±𝑖. 

 

 

 

 

 

 

 

 

 

 

Figure.2: Polynomial interpolation of  f(x) =  
1

1+ x2  on [−1, 1] at equally spaced for n = 8 (left) and 

n = 16 (right).  

Berrut and Trefethen in [10]  outlined the way to avoid this problem by using points clustered at 

the end of the interval, such as Chebyshev points. This is a notable improvement, with no 

oscillation at the end of the interval. However, there exist continuous functions for which 

interpolation at Chebyshev zeros does not converge. Such a function does not satisfy the Lipschitz            

condition. 

 

 

 

 

 

 

 

 

Figure.3.  Polynomial interpolation  on [−1, 1]  of f(x) =  |x|   at Chebyshev points for n = 16 (left) and  

  f(x) =  
1

1+ x2  for n = 16 (right). 
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Figure4: Polynomial interpolation of functions with different singularities. The top left panel is f(x) =

 
1

1+ 0.1 x2  on [−1,1]  with n = 16 and the top right panel on [0,1]  with n = 8. In the middle left 

panel we have  f(x) =  
1

1+ 25 x2  on [−1,1] with n = 16 and the middle right panel on [0,1]   with 

 n = 8. In the bottom left panel is f(x) =  
1

1+ 144 x2  on [−1,1] with n = 16  and the bottom right 

panel on [0,1]  with n = 16  and the bottom right panel on [0,1]  with  n = 8. Observation:  There 

is no Runge phenomenon on the half-interval.                                                                                                                                                  
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 n = 8. Observation:  There is no Runge phenomenon on the half-interval. 

 

 

 

 

 

 

 

Figure5.  Convergence of the error in the sub-norm (∞-norm )  of the polynomial interpolation. The left 

panel is for the function f(x) =
1

1+  x2  at equally spaced points on the interval [−5,5] and the right 

for [0,5]. The horezental axes refers to the number of points while the vertical axes refers to 

               ‖f(x) − pn(x)‖∞. 

 

 

 

 

 

 

 

 

Figure6. Convergence of the error in the sub-norm (∞-norm ) of the polynomial interpolation. The left 

panel is for the function  f(x) =
1

1+  x2  at Chebyshev points on the interval [−5,5] and the right for 

[0,5]. The horezental axes refers to the number of points while the vertical axes refers to ‖f(x) −

pn(x)‖∞. 
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We observe from Figure2 that the Gaussian function e−τx2
and arctan(τx) with equally spaced 

points are susceptible to the Runge phenomenon, depending on  τ and  n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure7: Polynomial interpolation for the functions f1(x) = e−20x2
and f2(x) = arctan (20x). The top left 

panel shows the interpolation  f1(x) = e−20x2
 using equally spaced points and the top right panel 

using Chebyshev points, both with  n = 16.  The bottom left panel shows the interpolation for  

f2(x) = arctan(20x) using equally spaced points and the bottom right panel using Chebyshev 

points, both with  n = 16. Observation:  There is an oscillation (Runge phenomenon) at the end of 

interval for the polynomial interpolant of the functions f1(x) and f2(x)   at equally spaced points.   
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If we interpolate the function on half of the interval or any subinterval, say [0,5] or [0,1], at 

equally spaced points with the same total number of points, we will get a better result. The 

interpolant converges faster to the function on [0,5] than on   [−5,5] (see Figure 8). 

 

 

 

 

 

 

 

 

Figure 8.  Polynomial interpolation of the function f(x) =
1

1+  x2 in terms of Chebyshev polynomials for 

n = 4 (left) and n = 8 (right). Observation: There is no oscillation at the end of interval (Runge 

phenomenon). 

We now consider the case when the function f(x) extends to a function f(z) of the complex plane 

which is analytic in a simple closed contour C that contains the interval [a, b]. The complex error 

function is given by a contour integral: 

Theorem.2  [3] : Assume that 𝑓 is a function that extends to an analytic function in a domain 𝛺 

that contains the interval [−1,1].  Let 𝐶 ⊂ 𝛺 be a simple closed contour in the complex plane and 

let  𝑥𝑗  ∈ 𝐶 , where 𝑓 is  an analytic function on and inside 𝐶. Then 

f(x) −  pn(x) =  
1

2πi
∫

ϕn(x)f(z)

ϕn(z)(z − x)C

dz,       x ∈ [−1,1],        (9.3) 

Where 

pn(x) =  
1

2πi
∫

f(z)(ϕn(z) − ϕn(x))

ϕn(z)(z − x)C

,   where   ϕn(x) = ∏(x − xk).                    

n

k=0

 

From ( 4.2), the polynomial interpolant can be written as  
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pn(x) =  ∑
ϕn(x)f(xj)

ϕn
′ (xj)(x − xj)

n

j=0

                    (10.3) 

Therefore (9.3 ) has a simple pole at z = x  with residue   
f(z)

ϕn(z)
 and simple poles z =  xj with 

residue 
f(xj)

L′(xj) (xj−x)
 . 

By subtracting ( 9.3) from         

f(z) =  
1

2πi
∫

f(z)

(z − x)C

 dz  

Then, we have (10.3) which is a polynomial.  

Taking the absolute values, we get estimation: 

|f(x) −  pn(x)| ≤  
1

2πi
 max
x∈[−1,1]

|ϕn(x)| ∫
|f(z)|

|ϕn(z)(z − x)|
|dz|

C

 

                                     

≤ Const 
|ϕn(x)| max

z ∈C
|f(z)|

min
x∈[−1,1]

|ϕn(z)||z − x|
 

We can obtain the following estimation:            

Theorem.3 : Let  𝑓(𝑥) be a rational function on [𝑎, 𝑏]. Then the interpolant 𝑝𝑛 converges to 𝑓(𝑥) 

if  |𝑏 − 𝑎| < 𝑅, where 𝑅 is the shortest distance from [𝑎, 𝑏] to the singularities of the function.  

Proof:  We start with the Taylor series 

f(z) = ∑
f (n)(x)

n!

∞

n=0

 (z − x)n 

which converges for an analytic function f  inside the circle |z − x| < 𝑅 > 0, where R is the 

shortest distance from [a, b] to the singularities of the function. 

By using the Cauchy formula, we have 
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f (n)(x) =
n!

2π
∫

f(z)dz

(z − x)n+1
c

 

where C is a closed contour. Therefore, the estimation for the above is given by 

|f (n)(x)| ≤
n!

2π
∫

|f(z)||dz|

|(z − x)n+1|c

≤
Mn!

Rn
 

Then, 

|f(x) −  pn(x)| ≤
Mn! (b − a)n+1

Rnn!
 

Therefore, if |b − a| < 𝑅 then the interpolant pn converges to f.                          

In the case of a meromorphic function, the error can be represented in terms of contour integral in 

the complex plane by using the residue theorem: 

Theorem.4 : Assume that   𝑓(𝑧) is a function that is analytic except for a finite number of poles. 

Then the 𝑝𝑛 converge to 𝑓(𝑥) if   

max
a≤x≤b

|
ϕn(x)

ϕn(xj)
| → 0      as      n → ∞,      where      ϕn(x) = ∏(x − xk).                    

n

k=0

 

Proof: Let C(ρ) and C(ρ∗)be two contours, where the contour C(ρ∗)   encloses a simple pole of the 

function and the contour C(ρ)  encloses the interval and the interpolation points but does not 

enclose any singularities of the function. Let C(ρ′) enclose C(ρ) and  C(ρ∗). Then, the formula  

(9.3 ) is equivalent to 

1

2πi
∫

ϕn(x)f(z)

ϕn(z)(z − x)C(ρ)

dz =  
1

2πi
∫

ϕn(x)f(z)

ϕn(z)(z − x)C(ρ′)

dz −
1

2πi
∫

ϕn(x)f(z)

ϕn(z)(z − x)C(ρ∗)

dz 

Using the residue theorem we have 

f(x) −  pn(x) =  
1

2πi
∫

ϕn(x)f(z)

ϕn(z)(z − x)C(ρ′)

dz − ∑ Res [
ϕn(x)f(z)

ϕn(z)(z − x)
]

m

j=0

            (11.3) 

where  Res f  is the residue of f at xj. 
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Since the function f(z)  is a rational function. Then, the first integrand of (11.3) would be zero for 

sufficiently large n as its radius tends to infinity, which is given by the residue at infinity. Leaving 

the integral around the poles, which is equal to sum of the residues at the poles. So 

f(x) −  pn(x) = − ∑  [
ϕn(x)

ϕn(z)(z − x)
]

m

j=0

Res[f(z)],      for all     z = xj,  

and z = xj  is a pole of f(z). Then, the integral around the poles is computed by the residue of the 

function at each pole: 

max
a≤x≤b

|f(x) − pn(x)| ≤  ∑ max
a≤x≤b

 |
ϕn(x)

ϕn(xj)(xj − x)
|

n

j=0

|Res[f(z)]|,    

≤  Const  max
a≤x≤b

|
ϕn(x)

ϕn(xj)
| 

Therefore, the error converges uniformly to zero only if 

         

max
a≤x≤b

|
ϕn(x)

ϕn(xj)
| → 0,             as      n → ∞. 

  More generally, the error bound can be estimated: 

Lemma.1 [3]: Assume that 𝑓 is analytic in a region  𝛺  bounded by a simple closed contour 𝐶 that 

encloses the interpolation points  {𝑥𝑗}
𝑗=0

𝑛
. Then 

|f(x) −  pn(x)| ≤
L(C) max|f(z)|

min
x∈[−1,1]

|z − x|
    e

n max κ(z)
   z ∈ C 

where   κ(z) =
1

n
maxx∈[−1,1] log |

ϕn(x)

ϕn(z)
|      and  L(C)  is the arc length. 

The convergence of the function is based on the function |
ϕn(x)

ϕn(z)
| and the pole location. The location 

of the points plays a crucial part in polynomial interpolation and its convergence or divergence.      

     The region of convergence can be explained by potential theory. 
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5. Potential theory and Runge's phenomenon 
 

Convergence or divergence of a  polynomial interpolant depends on the domain of analyticity of 

the function being interpolated.  To explain Runge's phenomenon, we start with a result from 

potential theory that is related to Lemma.1  above: 

Let ϕn(x) be a polynomial such that   ϕn(x) = ∏ (x − xk) n
k=0 ,  where it can be extended to z ∈ ℂ 

  ϕn(z) = ∏(z − xk) 

n

k=0

  

Then taking the logarithm of both sides, we have 

log|ϕn(z)| =  ∑ log|z − xk|

n

k=0

 

Now, let us define the discrete potential [8] 

δn(z) =  
1

n + 1
∑ log|z − xk|

n

k=0

. 

δn(z) is the potential at z, which depends on the charge 
1

n+1
∑ log|z − zk|n

k=0  at each zk.  

There is a correspondence between ϕn(z) and δn(z):  

 

|ϕn(z)| =  enδn(z) 

A small variation in δn(z) leads to exponentially larger variation in ϕn(z) for large n. From this, 

the Runge phenomenon is related to potential theory. If the points are equally spaced, then the 

above sum can be defined as a Riemann sum for the integral. 

Let assume the distribution of the interpolation points xj  in [−1,1]  is given by a density function 

μ(x)   with  

∫ μ(x) dx 
a

b

= ∫ μ(x) dx 
1

−1

= 1 

 

and define the associated potential function 

 

δ(z) = ∫ μ(x) log|z − x|  dx 
1

−1

  

The normalized point measure μ is given by 

μn(x) =  
1

n + 1
 ∑ σ(x − xj)

n

j=0
, 
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where σ is the Dirac delta functions of strength1, and μ is the limit of μn  as n → ∞.  The above 

integral can be computed explicitly for equally spaced points on [−1,1], where the density function 

is μ =
1

2
 and the potential function for   z = x + iy  is 

 

δ(z) =
1

2
∫ log|z − t| dt

1

−1

=  
1

2
∫ log √(x − t)2  + y2 dt

1

−1

 

                          =
1

4
(1 − x) log  ((x − 1)2 +   y2)  +  

1

4
(1 + x) log  ((x + 1)2 +   y2) 

                               − 
1

2
 y arctan

x−1

y
+         

1

2
 y arctan

x+1

y
 .    

Hence 

eδ(z) =  e−1((x − 1)2  + y2)(1−x)/4((x + 1)2  +  y2)(1+x)/4

× exp [
1

2
y (arctan

x + 1

y
−  arctan

x − 1

y
)]. 

For real part x, we have 

eδ(x) =  e−1(x − 1)(1−x)/2(x + 1)(1+x)/2, 

 

where the real part of  δ(z)  

δ(z) =  −1 + ℜ (
z + 1

2
log(z + 1) +  

z − 1

2
log(z − 1)). 

We have δ(0) = -1 and δ(±1) = −1 + log 2. Then, 

 

|ϕn(z)| = exp(n δ(±1)) =  (
2

e
)

n

      and   exp(n δ(0)) =  (
1

e
)

n

. 

For the imaginary part  y, we have 

𝐞δ(iy) =   e−1√1 + y2  exp (y arctan
1

y
) = 

1

2
 log(1 + y2) +  y (

π

2
− arctan y) − 1. 

If  

max
x∈[−1,1]

|δ(x)| =  
2

e
= 0.7357588824 <  |δ(z)|, 

 

then we have convergence on the whole interval [−1,1]. 

The integral can also be computed explicitly for the Chebyshev points, where the density function 

is   μ(x) =   
1

π√1− x2
    and the potential function is 

δ(z) =  log |
z − √z2 − 1

2
| 



Souad Abumaryam.. 

 

Vol. 8 (1), 77–100 June  2018 94 

 

 

We have δ(0) =  log
1

2
  and   δ(±1) =  log

1

2
. So 

 

|ϕn(z)| = exp(nδn)   ≈   2−n       on  [−1, 1]. 

Therefore, from the above we can see the difference between the values of |ϕn(z)| at equally 

spaced points at the ends and in the middle of the interval. On the other hand the value of |ϕn(z)|  

at Chebyshev points is the same. Therefore, the error increases exponentially as n increases for 

equally spaced points whereas the error decrease exponentially for Chebyshev points. Note that, 

the convergence depends on |
δ(x)

δ(iy)
|

n+1

as   n → ∞ . 

 

From the above and Lemma.1, the interpolating polynomial converges exponentially if the 

function f has poles in the region with δ(x) −  δ(z) < 0 and diverges if f  has poles in the region 

with δ(x) −  δ(z) > 0  in some region outside the interval.  

Proposition.1:  Let f be an analytic function on [−1,1] and 𝑝𝑛be a sequence of polynomials 

interpolating 𝑓 at equally spaced points {𝑥𝑗}
𝑗=0

𝑛
. Let 𝛿(𝑧) be defined as above and let 𝐶𝜌 be the 

boundary of 𝛿(𝑧)  in the complex plane, which is given by 

 

Cρ = {x + iy: δ(x) = δ(iy) =  ρ}               (12.4) 

Then  

 If f is analytic for all z such that δ(z) <  𝛿(ρ), then the interpolant converges to f on 

[−1,1]. 

 If f is not analytic for all z  and has a pole z∗, and z is such that δ(z) >  𝛿(z∗), then the 

interpolant does not converge to f on [−1,1] 

If f(x) has singularities only outside the region of convergence, then the interpolation will 

converge everywhere on [−1,1]. 

The level curve Cρ as defined in (12.4) which go around the interval [−1,1] as the number of 

interpolation points n  tend to ∞  is very important. 

 

We summarize our observations in the following proposition : 

Proposition.2:Let we  

 Consider the analytic function 𝑓(𝑥) =  
1

𝑥−𝑟
 on [−1,1] where 𝑟 is real and does not lie on 

the interpolation interval. Then the level curve is given by 

 𝛿(𝑧) =  𝑙𝑖𝑚𝑥→1 𝛿(𝑥) = 2 𝑙𝑜𝑔 2 − 2, where 𝛿(𝑥) −  𝛿(𝑟) < 0. Hence, the interpolating 

polynomial converge to the function (see Figures 9&10). 
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 Consider the analytic function 𝑓(𝑥) =  
1

𝑠2+ 𝑥2, where  𝑠 > 0    is real on 𝑦 − 𝑎𝑥𝑖𝑠. The 

poles of this function are ± 𝑖𝑠  and so   𝛿(𝑥) −  𝛿(𝑖𝑠) < 0. Therefore, 𝑝𝑛converges if 

𝑠 > 0.5 and diverges if 0 < 𝑠 < 0.5.  

Figures (9 ) and (10 ) show the polynomials interpolating the function f(x) =  
1

x−r
  for different r 

This function can be written asf(x) =  
1

r
(

1

1− 
x

r

).  Since  |x| < 1, the Taylor series for this function 

f(x) =
1

r
∑ (

x

r
)

k
∞

k=0

 , 

which converges if |
x

r
| ≤ |

1

r
|. 

Notice that this is an improvement on the bound  s >  |b − a| = 2  from  Theorem.3. 

Remark.1 [15]: Let f be an analytic function in the ellipse  Eρ interpolated by polynomials at 

Chebyshev points. Then 

 

 If f has real singularities at   x = ±r, where   r > 1 , then the corresponding radius of the 

ellipse  is ρ = r +  √r2 −  1 

 If f has imaginary singularities at = ±is , where  s > 0, then the ellipse has radius   ρ = s +

 √s2 +  1. 

The remark shows that, if the region is large, then the convergence is faster. 
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Figure 9.  Polynomial interpolation on [−1,1] for the function f(x) =  
1

x−r
 at four equally spaced points  for 

different values of  r. Clockwise from the top-left: r = 1.1, r = 1.5, r = 3 and r = 2. 
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Figure10. Polynomial interpolation on [−1,1] for the function f(x) =  
1

x−r
 at four Chebyshev points  for 

different values of  r. Clockwise from the top-left: r = 1.1, r = 1.5, r = 3 and r = 2. 

 

Example.3: 

 The analytic function f(x) =  
1

2−x
 has pole at 2 and ρ = 2 +  √22 − 1 ≈ 3.732. . … We 

would expect fast convergence. 

 The analytic function f(x) =  
1

1+ 16x2 has poles at ±i/4 and ρ =
1

4
+ 

√17

4
≈ 1.28 … We 

would expect slow convergence. 

Example.4:  Reconsider the previous example 

f(x) =  
1

1 +  x2
,          x ∈ [−5, 5] 
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with poles at ±i . The logarithm potential for this is given by 

δ(z) = ∫ ln|z − t|
5

−5

 dt. 

As δ(z) is symmetric with respect to the real axis and the poles of the function are x = ±i, the 

region of convergence is given by 

Cρ = {z ∈ ℂ,   δ(z) < 𝛿(i)} , 

where the boundary of the region  (the curve δ(z) = δ(i)) cuts the real axis at  

x∗ = 3.6338430238. Thus pn converge to f for |x| <  3.633  and diverge in the 

interval(−5, x∗) ⋃(x∗, 5), except at the points ±5,  since these are the interpolation points. This 

function and all its derivatives are continuous and bounded for all real x, but it has poles in the 

complex plane. However, these poles are too close to the interval[−5,5]. We can rewrite the 

function as                                                                                                                            

f(z) =
i/2

z + i
− 

i/2

z − i
 

which has residues of i/2 at z = −i and  −i/2 at z = i. Therefore, by the residue theorem 

f(x) −  pn(x) =  
−i∅n(x)

2∅n(−i)(−i − x)
+  

i∅n(x)

2∅n(i)(i − x)
 

For even n and  equally spaced points in [−5,5], the function ∅n(x) is even, which means that 

∅n(i) =  ∅n(−i)  and so we have                                                                                                          

∅n(x)

∅n(i)
 [

i/2

i − x
+  

i/2

i + x
] =  

−∅n(x)

∅n(i)(1 + x2)
 

Therefore the convergence depends on the behavior of  
∅n(x)

∅n(i)
. Now 

|∅n(x)|1/n =  
1

n
log|∅n(x)| = 

1

n
∑ log|x − xk|,

n

k=0

 

where 

lim
n→∞

1

n
log|∅n(x)| = 

1

10
∫ log|x − t|dt

5

−5

= q(x). 

The function q(x) is real for complex x, and the equation ( q(x) = q(i)) has real roots x = ±x∗, 

where x∗=3.63....  If  q(i) = δ(i), then for  x > x∗    we have q(x) = δ(x) > 𝛿(𝑖). Now 

log|∅n(x)|1/n → δ(x)        and        log|∅n(i)|1/n → δ(i) 

Then, for large n 

|log|∅n(x)|1/n −  log|∅n(i)|1/n| >  |δ(x) −  δ(i)|. 

In other words, 

|
∅n(x)

∅n(i)
| >  e(δ(x)− δ(i))n. 
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When |x| > x∗, since δ(x) >  𝛿(i), the error converges to infinity and therefore the function 

diverges for |x| > x∗. The curve with ρ= 2.46879067  passes through the poles  x = ±i of the 

function and cuts the real line  ± 3.6333843. Hence, the sequence pn converges inside this curve.  

For Chebyshev points we have 

dμ =  
dt

π√25 −  t2
       and       δ(z) =  

2

z + (z2 − 25)1/2
 . 

Therefore, we have, e−δ(z) = 2.5, and its potential curve for values larger than 2.5 are ellipses with 

foci ±5. The Runge function can be expanded as a power series centred at the origin 

1

1 +  x2
=  ∑(−1)k

∞

k=0

x2k,      |x| < 1. 

The series converges inside the unit disk and diverges outside of it.  

For a generalization of the Runge function, we have the following: 

Proposition.3: Consider a generalization  𝑓(𝑥) =
1

𝑠2+ 𝑥2 of Runge's example on the interval 

[−𝑎, 𝑎], where 𝑠 > 0 is on 𝑦 − 𝑎𝑥𝑖𝑠. Then 

|f(x) −  pn(x)| ≤
|r|

s2 +  x2
|
∅n(x)

∅n(si)
|. 

where   x = r  for even n and r = si for odd n. The convergence of pn depends on |
∅n(x)

∅n(si)
|. If  

max
x∈[−a,a]

δ(x) <  𝛿(si) 

where 

max
x∈[−a,a]

 δ(x) =  δ(a) =  
2a

e
           

and    δ(si) ≤  δ(x). Therefore the convergence occurs when     s > ζ∗a where    ζ∗=0.5255. (See 

also [7]).    

                                                                                                                                               

6. Conclusion  
 

We can conclude that, if the interpolated function f is real analytic and its poles in the complex 

plane are located far from the interpolation interval, then interpolation converges uniformly to f. If 

the above condition is not satisfied, the polynomial interpolation may diverge for certain 

distributions of points. In particular, rational functions with singularities near  the interpolation 

interval may lead to the Runge phenomenon 

 

 

. 
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