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Abstract 

Fredholm integral equations with continues kernels arise for instance in the boundary integral equations either 

directly or as a result of treating different kinds of singular kernels using some regularization techniques. Here, 

we show a comparison of the convergence of two well-known numerical methods for solving integral equations. 

These methods are the collocation method and the Galerkin method.  An  illustrated examples for second kind 

Fredholm integral equations of continuous kernel show that the collocation method seems to converge faster 

than the Galerkin method.                                                                                                                                      
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1. Introduction 
 

The application of integral equations with different kinds of kernels is an important subject within 

applied sciences. Integral equations are used as mathematical models for many physical situations. 

Also, the rapid development of computer engineering has around the considerable interest of 

researchers for the development of numerical methods for the solution of applied problems. Many 

different methods can be used for solving the integral equations analytically. These methods are: 

Fourier transformation methods [1]; singular integral method, Cauchy method [2]; orthogonal 

polynomials method [3, 4]; degenerate kernel method [5, 6], Potential theory method [7]; and 

Kreins method [8].  For a rigorous insight into the analytic methods for solving the integral 

equations we refer the reader to the references [9, 10].                                                            

The numerical methods take an important place in solving integral equations when the 

kernel has either continuous or discontinuous form. For some of these numerical methods, in the 

linear and nonlinear integral equations we state projection-iteration methods [11, 12]; collocation 

method [13, 14, 15]; Projection method [16, 17], Galerkin method [18, 19]. More information for 



 On Some Numerical Methods for ..... 

. 

Vol. 8 (1), 36–52 June  2018 37 

 

 

the numerical methods can be found in Atkinson [20, 21], Delves and Mohamed [22], Baker [23] 

and Goldberg [24].                                                                                                                                      

  The Fredholm Integral Equations (FIEs) of continuous (non-singular) kernel arise in many 

applications. For example, one obtains such equations as a result of implementing the boundary 

element method [25] which reduces the differential equation to an integral equation. Therefore, 

one obtains boundary integral equations of continuous kernels either directly or as a result of 

treating different kinds of singular kernels using some regularization techniques [26, 27, 28].  

Conceptually, solving the integral equation depend on its kernel. Thus if the kernel is continuous 

and can be written as a multiplication of two functions, one can use the degenerate kernel method 

[22, 23, 24]. On the other hand, if the kernel cannot be written as multiplication of two functions, 

one can use the approximate kernel method, or the iterated method. These methods, for example, 

are square method, block by block method, Runge–Kutta method, collocation method, Galerkin       

method and Adomian method [22, 23, 24].                                                                            

  In this paper, we discuss the solution of a second kind FIEs with continuous kernel using 

some numerical methods such as the collocation and Galerkin methods. In section one; we set up 

the notation for the kind of the integral equation that we are using in this paper. Then in section 

two and three we briefly present the core idea of both the collocation and the Galerkin methods, 

respectively. Also for the sake of comparison, some examples in the linear case are solved by each 

method. Finlay, a discussion and conclusion is drawn on the performance of both the collocation 

and the Galerkin methods.                                                                                                     

                                                                                          

2. Types of integral equations 
 

Equations in which the unknown function appears under an integral sign and may be add to one of 

both sides are called integral equations. The integral equation takes the form [1],                     

             ,    .  
b

a

x K x y y dy f x                                          
(1)

 

Where  f(x),   and  K(x, y) are known functions, which are named the free term and the kernel of the 

integral equation, respectively. The numerical coefficient λ  is called the parameter of the integral 

equation and φ(x),   is the unknown function to be determined.                                                 

There are numbers of classification of linear integral equations that distinguish different kinds of 

equations. We take µ = 0, for the FIE of the first kind, while µ =constant ≠ 0 for the FIE of the 

second kind, and µ = µ(x),   for the third kind.  After giving a brief definition of the type of equation 

that we consider in this paper, next we will present two numerical methods and illustrated examples 

solved by both methods.                                                                                                        
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3. The Collocation method 
 

Here we show how to apply the collocation method [13, 14]; to solve the following FIE of the 

second kind,                                                                                                                                            

         ,    .  
b

a

x f x K x y y dy                                           
(2)

 

We suppose that the approximate solution of the FIE (2) is expressed as,  

             
   .  

1

xCxS kk

n

k

n 



                                                           

(3)
 

Such that the functions   φ
1
,φ

2
 , … ,φ

n
  are  linearly independent. Implementing the approximate 

solution (3) in the FIE (2) leads to                                                                                          

                           
         nn

b

a

n CCCxEdyySyxKxfxS ,...,,,   , 21  ,
                          (4)    

where   E( x, C1 , C2 , … , Cn )  is the computation error. Then substitute the points  x1, x2 , … , xn   in 

equation (4) to obtain  

     
         , , ,   ,    1 ,  2 ,  .  .  .  ,   .

b

n i i i n i

a

S x f x K x y S y dy x a b i n   
        

   
(5)              

 

To find the constants C1 , C2 , … , Cn , of the approximate solution  Sn(x) given in equation 

(3), we use the values of the functions   φ
1
 , φ

2 , … , φ
n
    and calculate the integrals .  Then 

substitute by the points  x1, x2 , … , xn , such that E(xi,C1
,C

2
,…,C

n
) = 0, we obtain  n  

algebraic linear equations in  n  unknowns (C
1
,C

2
,…,C

n
).  A final step is to solve the 

resulting linear system and obtain the approximate solution Sn(x) defined by equation (3). 

Next we give some demonstration examples showing the method.                                                                   

Example 1:  Solve the following integral equation using the collocation method 

                      
1

0

2 2  ,                                          (6)x y xx e y dy x e    

where the exact solution is given by the function     

 
2

 2 .
3

xx e x
 

  
   

Solution: Suppose that the approximate solution takes the form 

.
 

   xCxS kk

n

k

n 



1
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Where we take,

         2 3 4

1 2 3 4 5              5   , 1 ,  ,  ,  ,   .

 

n x x x x x x x x x         

 

That is, we have 

  2 3 4

1 2 3 4 5  nS x C C x C x C x C x    

 Substituting this approximate solution in the FIE (6) leads to,            

   
1

1 2 3 4 5

0

2 2  ( , , , , , ) .x y x

n nS x e S y dy x e E x C C C C C    

That is 

   
1

2 3 4 2 3 4

1 2 3 4 5 1 2 3 4 5

0

1 2 3 4 5

 2    

2 ( , , , , , ) ,

x y

x

C C x C x C x C x e C C y C y C y C y dy

xe E x C C C C C

         




 

Such that the last term  represents the error. Thus we obtain the following linear system   

 

 1 4 5 2 32.264241118C +0.22785788C +0.17567264C +0.528482235C +0.321205588C  = 0.
  
          

1 2 3 4 52.623317728C +0.9285846224C +0.4749361390C +0.3082003120C +0.2294743848C =0.6420127085 

        

1 2 3 4 53.084381222C +1.371319903C +0.7795784852C +0.5006741368C +0.3521352184C =1.648721271

1 2 3 4 53.676398468C +1.868796901C +1.242492235C +0.9042501400C +0.6883052318C =3.175500026 

 

1 2 3 4 54.436563656C +2.436563656C +1.873127313C +1.619381940C +1.477527745C =5.436563656 

 

 By using Maple18 we solve this system, and we get   

 

1 2 3

4 5

-0.666648983700731, 1.32113354685743, 1.76621887428895,

0.622365994141024, 0.581354401742185.

C C C

C C

  

   

 

So, we obtain the following approximate solution of the FIE (6), 

  2

5

3 4

 -0.666648983700731 1.32113354685743  1.76621887428895 +

0.622365994141024 +0.581354401742185 .

S x x x

x x

  
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Table 1 shows a comparison of the exact (analytical) solution φ(x) of the FIE (6) against the 

numerical solution Sn(x) for different values of x taken in the given interval [0, 1]. The error can be 

determined as the absolute value of the difference between the exact solution and numerical solution 

as shown in the fourth column of Table 1.  We notice that by increasing the number of points to n = 

7, we obtain more accurate solution of the FIE (6) as shown in the fourth column of Table 2. 

 

    

Table 1: The exact and numerical solutions of the FIE (6) using collocation method for n = 5. 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0.0000176829659356281 0.666648983700731- 0.6666666667- 0 

0.0000227031469440253 0.213981533053056- 0.2140042362- 0.25 

0.0000291507767345989 0.549602907676735 0.5495737569 0.5 

0.0000374321843561454 1.76420411318436 1.764166681 0.75 

0.0000480633288546528
 

3.62442383332885
 

3.624375770
 

1
 

 

Table 2: The exact and numerical solutions of the FIE (6) using collocation method for n = 7. 

   7x S x 
 

Error
 

 7S x
 

Numerical solution 

 x
 

Analytical solution 

x 

5.73934844094737×10-8 0.666666609273182- 0.6666666667- 0 

4.16754076221215×10-7 0.214003819445924- 0.2140042362- 0.25 

7.12624619314539×10-8 0.549573828162462 0.5495737569 0.5 

2.95613527656613×10-7 1.76416638538647 1.764166681 0.75 

1.19297951517439×10-7 3.62437588929795
 

3.624375770
 

1
 

 

Example 2: Use the collocation method to solve the following integral equation, 
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   

2
5 2 2 2 4 3

0

1
sin( )  3 2 cos  cos  sin ,   

2 4 2 2
x x xy y dy x x x x x x x



  
   

     
         

     


           
 
(7)

   

where the exact solution is given as φ (x) = x 2 .                                                                              

Solution: Suppose that the approximate solution takes the form 

              
   xCxS kk

n

k

n  
1





 
.
  

We take, 

 

         2 3 4

1 2 3 4 5              5   , 1 ,  ,  ,  ,   .

 

n x x x x x x x x x         

 
Substituting this approximate solution in the FIE (7) leads to, 

     
2

5 2 2 2 4 3

1 5

0

1
sin( )  3 2 cos cos sin ,...,

2 4 2 2
n nS x x xy S y dy x x x x x x x E x,C C



  
 

     
          

     
  

To find the unknowns (C
1
,C

2
,…,C

5
) in Sn(x) , we substitute by the points  x1, x2, x3 x4, x5,  taken in the 

interval [0, π/2] such that the error is zero. Hence For    x = 0,   one has C1= 0. 

For  x = 0.39269,   one has 

0.99561 C1 + 0.38813 C2  + 0.14886 C3 - 0.05385 C4 - 0.01502 C5 = 0.14886  .                             

For    x = 0.78539, one has 

0.74534 C1  + 0.52587 C2  + 0.31667 C3 +0.11221C4 – 0.10193 C5  = 0.31667.    

For    x = 1.17809, one has 

 - 1.45819C1 – 1.22892 C2  - 1.31929C3 – 1.65353C4 – 2.26882 C5= - 1.31929. 

 For    x = 1.570796327, one has  

-9.84413 C1 – 8.31953 C2  - 8.07895C3 – 8.41708C4 – 9.08605 C5 = - 8.07895. 

 Using Maple 18, we solve this linear system for the unknowns  C1,  C2,  C3,  C4 , C5to obtain the 

values, 

C1 = - 3.41245×10-20 ,  C2 = 3.32217×10-9,  C3 = 0.99999,  C4 =1.47975×10-8,  C5 = - 4.71064×10-9 . 

So, we obtain the following approximate solution of the FIE (7), 
 

  
  20 9 2 8 3

5

9 4

  3.41245 10  3.32217 10  0.99999  1.47975 10  

 4.71064 10 .

S x x x x

x

  



       

 
 

  Table 3 shows a comparison of the exact (analytical) solution φ(x) of the FIE (7) against the 

numerical solution Sn(x) for different values of x taken in the given interval [0, π/2]. The error can be 

determined as the absolute value of the difference between the exact solution and numerical solution 

as shown in the fourth column of Table 3.  
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Table 3: The exact and numerical solutions of the FIE (7) using collocation method. 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

3.4124528×10-20 -3.4124528×10-20 0 0 

2.1975532×10-10 0.050355124 0.050355124 14
 

1.2595044×10-10 0.201420497 0.201420498 7
 

3.3556864×10-10 0.453196120 0.453196120 3 14
 

2.3108902×10-10 0.805681991 0.805681992 2 7 

3.8478842×10-10 1.258878114 1.258878113 5 14

 

4.3573545×10-10 1.812784483  1.812784482 3 7

 

3.3528462×10-10 
2.467401100

 
2.467401101

 
2

 

 

Example 3:  Solve the following integral equation using the collocation method 
 

         
1

3 2 1

0

1 - 1 1 ,                                          (8)xy x xx x e y dy e x e        

 

where the exact solution is given by the function     

   .xx e 
                                                                          

Solution: Suppose that the approximate solution takes the form 

.
 

Where we take, 

 

         2 3 4

1 2 3 4 5              5   , 1 ,  ,  ,  ,   .

 

n x x x x x x x x x         

 

That is, we have 

  2 3 4

1 2 3 4 5  nS x C C x C x C x C x    

 

   xCxS kk

n

k

n 



1
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Substituting this approximate solution in the FIE (8) leads to,            

 

   
1

1 2 3 4 5

0

2 2  ( , , , , , ) .x y x

n nS x e S y dy x e E x C C C C C    

That is, 

     

   

1
32 3 4 2 3 4

1 2 3 4 5 1 2 3 4 5

0

2 1

1 2 3 4 5

 1   

- 1 1 ( , , , , , ) ,

xy

x x

C C x C x C x C x x e C C y C y C y C y dy

e x e E x C C C C C

          

  


 

Such that the last term  represents the error. Thus we obtain the following linear system 

 

1 2 3 4 5-0.399824918C -0.6115757236C -0.46831018C -0.3595163C -0.2899C =-1.319869971 

          
1 2 3 4 5-1.748717812C -1.123672626C -0.8857324526C -0.7209458219C -0.5994269362C =-3.46533101 8

  

1 2 3 4 5-3.964622878C -2.158717643C -1.582922372C -1.284807900C -1.089741628C =-7.183554097

1 2 3 4 5-7.446931425C -3.988612652C -2.769060075C -2.153452421C -1.785035352C =-13.26835612

 

1 2 3 4 5-12.74625463C -7.000000002C -4.746254626C -3.507490746C -2.716291600C =-22.83794257

 

By using Maple18 we solve this system, and we get   

 

1 2 3

4 5

1.00029591104090, 0.996100458779729, 0.517993283065282,

0.130265924169716, 0.0735482263924198.

C C C

C C

  

   

 

So, we obtain the following approximate solution of the FIE (8), 
 

  2

5

3 4

 1.00029591104090 0.996100458779729  0.517993283065282 +

0.130265924169716 +0.0735482263924198 .

S x x x

x x

  

 

 

Table 4 shows a comparison of the exact (analytical) solution φ(x) of the FIE (8) against the 

numerical solution Sn(x) for different values of x taken in the given interval [0, 1]. The error 

computed as the absolute value of the difference between the exact solution and numerical solution 

as shown in the fourth column of Table 4.                                                                             
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Table 4: The exact and numerical solutions of the FIE (8) using collocation method for n = 5. 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0.000295911040899099 1.00029591104090 1 0 

0.00000710824809146970 1.28401830875191 1.284025417 0.25 

0.00000319486782474065 1.64872446586782 1.648721271 0.5 

0.0000304848840078087 2.11696953211599 2.117000017 0.75 

0.0000780245519536038
 

2.71820380344805
 

2.718281828
 

1
 

 

Example 4:  Solve the following integral equation using the collocation method 
 

   
1

3 2 2

0

 2  2 2 ,                       (9)xy x x xx x e y dy x x e x e e        

where the exact solution is given as φ (x) = x 2 .                                                                              

Solution: By following the same steps in the last two examples, we solve this integral equation. 

Thus we obtain the results shown in Table 5. This table shows a comparison of the exact (analytical) 

solution φ(x) of the FIE (9) against the numerical solution Sn(x) for different values of x taken in the 

given interval [0, 1]. The error can be determined as the absolute value of the difference between the 

exact solution and numerical solution as shown in the fourth column of Table 5.                                                                                                                     

 

      

Table 5: The exact and numerical solutions of the FIE (9) using collocation method. 
 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0 0 0 0 

3.46944695195361×10-18 0.0204081632653061 0.02040816327 1 7
 

1.38777878078145×10-17 0.0816326530612245 0.08163265306 2 7
 

2.77555756156289×10-17 0.183673469387755 0.1836734694 3 7
 

0 0.326530612244898 0.3265306122 4 7 

0 0.510204081632653 0.5102040816 5 7

 
1.11022302462516 ×10-16 0.734693877551021 0.7346938776 6 7
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4. The Galerkin method 
 

Here we show how to apply the Galerkin method [18, 19]  to solve FIE (2), to do so we approximate 

the exact solution φ(x) in the form 

              
   xCxS ii

n

i

n  
1





 
.
                                                           

(10)
 

 Such that the functions  ψ1(x),ψ2(x), . . . ,ψn(x) are linearly independent on the interval (a,b). 

Substituting the approximate solution (10) in the FIE (2) leads to 

            
         nn

b

a

n CCCxEdyySyxKxfxS ,...,,,   ,  21  .
              

(12)
 

Conceptually, the Galerkin method depends on n conditions to find the constants C1,C2,…,Cn  of 

approximate solution Sn(x). For this, we shall emphasize that the functions  ψ1(x),ψ2(x), . . . ,ψn(x) 

need to satisfy the following orthogonal relation, 

             
    nidxCCCxEx ni

b

a

,...,2,1 ,   0 ,...,,,    21    
.
                            

(12)
 

The formula (12) is called the basic rule of Galerkin method. Substituting equation (10) in the 

formula (12) leads to the following n  algebraic linear equations in  n  unknowns (C
1
,C

2
,…,C

n
) as,  

               
          0 , 








  dxdyySyxKxfxSx n

b

a

ni

b

a


 
. 
                            

(13)
    

A final step is to solve the resulting linear system (13) and obtain the approximate solution Sn(x). 

Next we give some demonstration examples showing the method.                                   

Example 5:  Resolve the integral equation (6) using the Galerkin method. 

Solution:  Suppose that the approximate solution takes the form 

   
1

 ,
n

n k k

k

S x C x


  

where we set 

         2 3 4

1 2 3 4 55 ,   1,     ,    ,   ,    .     n x x x x x x x x x         
               

Substituting this approximate solution in the FIE (6) leads to,            

 

   
1

1 2 3 4 5

0

2 2  ( , , , , , ) .x y x

n nS x e S y dy x e E x C C C C C    

That is 
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   
1

2 3 4 2 3 4

1 2 3 4 5 1 2 3 4 5

0

1 2 3 4 5

 2    

2 ( , , , , , ).

x y

x

C C x C x C x C x e C C y C y C y C y dy

xe E x C C C C C

         





 
 

Such that the last term represents the error. We have the following orthogonal relation 

 

     
1 1

5 5

0 0

   2     0.x y x

i x S x e S y dy xe dx 
 

   
 

 

  

Thus we obtain the following linear system 

 

1 2 3 4 53.172322538C +1.408081421C +0.885255052C +0.64152406C +0.50185506C =2.

          

1 2 3 4 51.764241118C +0.861815568C +0.571205588C +0 .42785788C +0.34233931C =1.436563656 .
        

1 2 3 4 510.241414754C +0.629599186C +0.430716134C +0.33033285C +0.26903951C =1.12687269.

1 2 3 4 50.962319396C +0.497766101C +0.34764558C +0.27124052C +0.2239804C =0.92907290 .

1 2 3 4 50.78728608C +0.41216593C +0.29206880C +0.2308482C +0.192718C =0.7911991 .

 
By using Maple18 we solve this system, and we get   

 

1 2 3

4 4

-0.652941489154673, 1.05430732275121, 2.95705864541767,

-1.22205159243499, 1.50046278908200.

C C C

C C

  

   

 
 

So, we obtain the following approximate solution of the FIE (6), 
 

  2

5

3 4

 -0.652941489154673 1.05430732275121  2.95705864541767

-1.22205159243499 +1.50046278908200 .

S x x x

x x

  

 

 

Table 6 shows a comparison of the exact (analytical) solution φ(x) of the FIE (6) against the 

numerical solution Sn(x) for different values of x taken in the given interval [0, 1]. The error can be 

determined as the absolute value of the difference between the exact solution and numerical solution 

as shown in the fourth column of Table 5. By increasing the number of pointsfrom n = 5 to n = 7, we 

obtain more accurate solution of the FIE (6) as shown in the fourth column of Table 7.     
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Table 6: The exact and numerical solutions of the FIE (6) using Galerkin method for n=5. 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0.0137251775119934 -

0.652941489154673 
0.6666666667- 0 

0.00377763029021158 0.217781866490212 0.2140042362- 0.25 

0.00492555193860045 0.554499308838600 0.5495737569 0.5 

0.00382940124436160 1.76033727975564 1.764166681 0.75 

0.0124599056612165
 

3.63683567566122
 

3.624375770
 

1
 

 

Table 7: The exact and numerical solutions of the FIE (6) using Galerkin method for n=7. 

   7x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0.000546693305702117 0.66611997336096
5- 

0.6666666667- 0 

0.0000325583244857319 0.21397167787551
4- 

0.2140042362- 0.25 

0.00000755141820640848 0.54958130831820
6 

0.5495737569 0.5 

0.0000513237774431019 1.76411535722256 1.764166681 0.75 

0.000605580040478504
 

3.62377018995952
 

3.624375770
 

1
 

 

Example 6:  Resolve the FIE (7) by using the Galerkin method.  

Solution: Suppose that the approximate solution of the FIE (7) takes the form 

   
1

 ,
n

n k k

k

S x C x


 

where we set 

         2 3 4

1 2 3 4 55 ,   1,   ,  ,   ,  .    n x x x x x x x x x         
               
Hence, one has  

     
2

5 2 2 2 4 3

5 5 1

0

1
 sin( )  3 2 cos   cos   sin  E x,C ,..., . 

2 4 2 2
nS x x xy S y dy x x x x x x x C



  
 

     
          

     
 

  We have the following orthogonal relation 
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     
22 2

5 2 2 4 3

5 5

0 0

  sin( )  3 2 cos   cos   sin      0.
2 4 2 2

i x S x x xy S y dy x x x x x x x dx

 

   
 

 
      

           
      

 

 

Thus we obtain the following linear system,

 

For  i = 1 , one has 

1.19566 C1 + 1.39295C2 + 1.59690C3 + 1.92839C4 + 2.43118C5   = 1.59690.     

For  i = 2 , one has 

2.5200 C1 + 2.25855C2 +2.37165C3 + 2.72760C4 + 3.32773C5 = 2.37165. 

For  i = 3 , one has 

3.89440 C1 + 3.36792C2 + 3.43716C3 + 3.86006C4 + 4.61448C5 = 3.43716 . 

For  i = 4 , one has 

5.74584 C1 + 4.92165C2 + 4.95825C3 + 5.49120C4 + 6.47331C5 = 4.95825. 

For  i = 5 , one has 

8.38895 C1+ 7.16139C2 + 7.16346C3 + 7.86107C4 + 9.17233C5  = 7.16346. 

By using Maple18 we solve this linear system for the unknowns  C1,  C2,  C3,  C4 , C5 to obtain,

, 0003604.0

 

 , 0011562.0  , 0012002.1 , 0004355.0  , 0000362.0

5

4321





C

CCCC

 

So, we obtain the following approximate solution, 

  432

5 0003604.0 0011562.0 0012002.1 0004355.0 0000362.0 xxxxxS 
 

Table 8: The exact and numerical solutions of the FIE (7) using Galerkin method. 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

3.6264199×10-5 0.000036264 0 0 

1.3176878×10-5 0.050341947 0.050355124 14
 

7.3399980×10-6 0.201413158 0.201420498 7
 

8.2871713×10-6 0.453204407 0.453196120 3 14
 

1.0153799×10-5 0.805692146 0.805681992 2 7 

3.353460×10-6 1.258874759 1.258878113 5 14

 
1.191060×10-5 1.812772572  1.812784482 3 7

 
2.674482×10-5 

2.467427845
 

2.467401101
 

2
 

 

Table 8 shows the values of the exact (analytical) solution φ(x) of the FIE (7) against the numerical 

solution Sn(x) for different values of x taken in the given interval [0, π/2]. The error can be 
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determined as the absolute value of the difference between the exact solution and the numerical 

solution as shown in the fourth column of Table 8.                                                                                                                             

Example 7:  Resolve the FIE (8) by using the Galerkin method.  

Solution: Suppose that the approximate solution of the FIE (8) takes the form 

   
1

 ,
n

n k k

k

S x C x


 

where we set 

         2 3 4

1 2 3 4 55 ,   1,   ,  ,   ,  .    n x x x x x x x x x         
               
Hence, one has  

           
1

3 2 1

5 5 1 5

0

1 - 1 1 E x,C ,..., . xy x xS x x e S y dy e x e C      

  We have the following orthogonal relation 

           
1 1

3 2 1

5 5

0 0

 1 + 1 1   0.xy x x

i x S x x e S y dy e x e dx 
 

      
 

 
               

By using Maple18 we solve the resulting linear system for the unknowns  C1,  C2,  C3,  C4 , C5 to 

obtain, 

1 2 3

4 5

0.999578591660359 , 1.00770410360354 , 0.469589761215411 ,

0.202697460126136 ,  0.0382344696324625 ,

C C C

C C

  

  

So, we obtain the following approximate solution of the FIE (8), 

  2

5

3 4

 0.999578591660359 1.00770410360354  0.469589761215411 +

0.202697460126136 0.0382344696324625

S x x x

x x

  

 

 

Table 9: The exact and numerical solutions of the FIE (8) using collocation method for n = 5. 

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0.000421408339641327 0.999578591660359 1 0 

0.000145061848680461 1.28417047884868 1.284025417 0.25 

0.000166350366220591 1.64855492063378 1.648721271 0.5 

0.000111509194545167 2.11711152619455 2.117000017 0.75 

0.000477441762088304
 

2.71780438623791
 

2.718281828
 

1
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Table 9 shows the values of the exact (analytical) solution φ(x) of the FIE (8) against the 

numerical solution Sn(x) for different values of x taken in the given interval [0, π/2]. The 

error can be determined as the absolute value of the difference between the exact solution 

and the numerical solution as shown in the fourth column of Table 9.                                        

Example 8:  Resolve the integral equation (9) using the Galerkin method. 

Solution: By following the same steps in the last two examples, we solve this integral equation. 

Thus we obtain the results shown in Table 10. This table shows the values of the exact (analytical) 

solution φ(x) of the FIE (9) against the numerical solution Sn(x) for different values of x taken in the 

given interval [0, 1] for n = 5. The error can be determined as the absolute value of the difference 

between the exact solution and numerical solution as shown in the fourth column of Table 10.            

                                                                                                     

Table 10: The exact and numerical solutions of the FIE (9) using the Galerkin method.                

   5x S x 
 

Error
 

 5S x
 

Numerical solution 

 x
 

Analytical solution 

x 

0 0 0 0 

5.89805981832114 ×10-17 0.020408163265306

2 

0.02040816327 1 7
 

1.94289029309402×10-16 0.081632653061224

7 

0.08163265306 2 7
 

3.05311331771918×10-16 0.183673469387755 0.1836734694 3 7
 

2.77555756156289×10-16 0.326530612244898 0.3265306122 4 7 

1.11022302462516 ×10-16 0.510204081632653 0.5102040816 5 7

 
1.11022302462516 ×10-16 0.734693877551020 0.7346938776 6 7

 
 

5. Discussion and conclusion 
 

In this paper we implemented both the collocation and the Galerkin methods to numerically solve the 

second kind FIEs (6), (7), (8) and (9) of continuous kernel. We measure the error of the 

computations as the absolute value of the difference between the exact (analytical) solution φ(x) and 

numerical solution

 
 5S x . Hence, comparing the error of the numerical computations using the 

collocation method shown in the fourth column of Tables 1, 2, 3, 4, 5 against the corresponding 
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computations using the Galerkin method shown in the fourth column of Tables 5, 6, 7, 8, 9, 10  one 

should notice that the computation error of the collocation method is much smaller than the one for 

the Galerkin method.  Therefore at least for the second kind FIEs (6), (7), (8) and (9)  that we 

consider here and for considerably a few interpolation points (n=5) in the given interval, one could 

claim that the collocation method performs better than the Galerkin method. Therefore one can 

conclude that the illustrated example for second kind Fredholm integral equation of continous kernel 

shows that the collocation method seems to converge faster than the Galerkin method.           

Conceptually, the difference in the performance between the collocation and Galerkin method is due 

to the fact that, in the collocation method we force the error to vanish at the collocated points  x1, x2, . 

. . , xn  . Whereas in the Galerkin method we make the error orthogonal to n given linearly 

independent functions  ψ1(x),ψ2(x), . . . ,ψn(x)  on an interval (a,b).                                          
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