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Abstract

Fredholm integral equations with continues kernels arise for instance in the boundary integral equations either
directly or as a result of treating different kinds of singular kernels using some regularization techniques. Here,
we show a comparison of the convergence of two well-known numerical methods for solving integral equations.
These methods are the collocation method and the Galerkin method. An illustrated examples for second kind
Fredholm integral equations of continuous kernel show that the collocation method seems to converge faster
than the Galerkin method.
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1. Introduction

The application of integral equations with different kinds of kernels is an important subject within
applied sciences. Integral equations are used as mathematical models for many physical situations.
Also, the rapid development of computer engineering has around the considerable interest of
researchers for the development of numerical methods for the solution of applied problems. Many
different methods can be used for solving the integral equations analytically. These methods are:
Fourier transformation methods [1]; singular integral method, Cauchy method [2]; orthogonal
polynomials method [3, 4]; degenerate kernel method [5, 6], Potential theory method [7]; and
Kreins method [8]. For a rigorous insight into the analytic methods for solving the integral
equations we refer the reader to the references [9, 10].

The numerical methods take an important place in solving integral equations when the
kernel has either continuous or discontinuous form. For some of these numerical methods, in the
linear and nonlinear integral equations we state projection-iteration methods [11, 12]; collocation
method [13, 14, 15]; Projection method [16, 17], Galerkin method [18, 19]. More information for
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the numerical methods can be found in Atkinson [20, 21], Delves and Mohamed [22], Baker [23]
and Goldberg [24].

The Fredholm Integral Equations (FIES) of continuous (non-singular) kernel arise in many
applications. For example, one obtains such equations as a result of implementing the boundary
element method [25] which reduces the differential equation to an integral equation. Therefore,
one obtains boundary integral equations of continuous kernels either directly or as a result of
treating different kinds of singular kernels using some regularization techniques [26, 27, 28].
Conceptually, solving the integral equation depend on its kernel. Thus if the kernel is continuous
and can be written as a multiplication of two functions, one can use the degenerate kernel method
[22, 23, 24]. On the other hand, if the kernel cannot be written as multiplication of two functions,
one can use the approximate kernel method, or the iterated method. These methods, for example,
are square method, block by block method, Runge—Kutta method, collocation method, Galerkin
method and Adomian method [22, 23, 24].

In this paper, we discuss the solution of a second kind FIEs with continuous kernel using
some numerical methods such as the collocation and Galerkin methods. In section one; we set up
the notation for the kind of the integral equation that we are using in this paper. Then in section
two and three we briefly present the core idea of both the collocation and the Galerkin methods,
respectively. Also for the sake of comparison, some examples in the linear case are solved by each
method. Finlay, a discussion and conclusion is drawn on the performance of both the collocation
and the Galerkin methods.

2. Types of integral equations

Equations in which the unknown function appears under an integral sign and may be add to one of

both sides are called integral equations. The integral equation takes the form [1],
b

wolx)~2 [K (.Y )oly) dy =1 (x). (1

Where f(x), and K(x, y) are known functions, which are named the free term and the kernel of the
integral equation, respectively. The numerical coefficient A is called the parameter of the integral
equation and ¢(x), is the unknown function to be determined.
There are numbers of classification of linear integral equations that distinguish different kinds of
equations. We take pu = 0, for the FIE of the first kind, while p =constant # 0 for the FIE of the
second kind, and p = p(x), for the third kind. After giving a brief definition of the type of equation
that we consider in this paper, next we will present two numerical methods and illustrated examples
solved by both methods.
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3. The Collocation method

Here we show how to apply the collocation method [13, 14]; to solve the following FIE of the
second kind,

b
p(x)=f (x)+.|'K(x,y)go(y) dy . )
We suppose that the approximate solution of the FIE (2) is expressed as,
Sn(X)zz Cy @ (X) (3)
k=1

Such that the functions  ¢,,¢, , ... ,¢, are linearly independent. Implementing the approximate
solution (3) in the FIE (2) leads to
b
S,()=f()+[ K(xy) S,(y)dy+E(x.C,.C,....C,), @)

a

where E(Xx,C,,C,, ..., Cy) isthe computation error. Then substitute the points X, X., ..., x, in
equation (4) to obtain

S, (x;)=f (xi)+lij(xi,y)Sn(y )y x; efab], i=1,2,...,n. (5)

To find the constants C, , C, , ... , C, , of the approximate solution Sy(x) given in equation
(3), we use the values of the functions ¢ , ¢,, ..., ¢ and calculate the integrals . Then
substitute by the points x, % , .., x, , such that E(x,C,C,....C) = 0, we obtain n
algebraic linear equations in n unknowns (C,C,...C). A final step is to solve the

resulting linear system and obtain the approximate solution S,(x) defined by equation (3).
Next we give some demonstration examples showing the method.
Example 1: Solve the following integral equation using the collocation method

1
¢(x)+2jex‘y¢(y)dy =2x e*, (6)
0
where the exact solution is given by the function
2
X)=¢e"[2x—-=1.
7t [ 3]

Solution: Suppose that the approximate solution takes the form

Sn(X)z kZ:, C o (X)
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Where we take,
n=>5 1(91()():1’ (Pz(x)z)(’ %(X):Xz’ (04(X):X3’ ¢5(X)=X4'

That is, we have
S,(x)=C,+Cx +Cx*+C,x°+Ccx*
Substituting this approximate solution in the FIE (6) leads to,

1
S, (x)+2 [e's, (y)dy =2x e +E(x ,C;,C, ,C,,C, .Cy).
0

That is
1
(Co+Cox +Cx?+C x°+Cx* )+2[ @7 (C,+C,y +Coy * +C,y *+Coy* ) dy =
0

2xe* +E(x ,C,,C,,C,,C,,C)),
Such that the last term represents the error. Thus we obtain the following linear system

2.264241118C,+0.22785788C,+0.17567264C, +0.528482235C, +0.321205588C, = 0.
2.623317728C, +0.9285846224C, +0.4749361390C, +0.3082003120C, +0.2294743848C, =0.6420127085

3.084381222C, +1.371319903C,+0.7795784852C,+0.5006741368C, +0.3521352184C,=1.648721271

3.676398468C, +1.868796901C, +1.242492235C,+0.9042501400C, +0.6883052318C, =3.175500026

4.436563656C, +2.436563656C,+1.873127313C,+1.619381940C, +1.477527745C, =5.436563656

By using Maplel8 we solve this system, and we get

C, =-0.666648983700731, C, =1.32113354685743,C, =1.76621887428895,
C, =0.622365994141024,C, = 0.581354401742185.

So, we obtain the following approximate solution of the FIE (6),
S, (x ) = -0.666648983700731 +1.32113354685743x + 1.76621887428895x *+

0.622365994141024 x *+0.581354401742185x “.
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Table 1 shows a comparison of the exact (analytical) solution ¢(x) of the FIE (6) against the
numerical solution Sy(x) for different values of x taken in the given interval [0, 1]. The error can be
determined as the absolute value of the difference between the exact solution and numerical solution
as shown in the fourth column of Table 1. We notice that by increasing the number of points to n =
7, we obtain more accurate solution of the FIE (6) as shown in the fourth column of Table 2.

Table 1: The exact and numerical solutions of the FIE (6) using collocation method for n = 5.

X o(x) S5(x) lp(x)=Ss(x))
Analytical solution Numerical solution Error
0 -0.6666666667 | -0.666648983700731 0.0000176829659356281
0.25 | -0.2140042362 | -0.213981533053056 0.0000227031469440253
0.5 0.5495737569 0.549602907676735 0.0000291507767345989
0.75 1.764166681 1.76420411318436 0.0000374321843561454
1 3.624375770 3.62442383332885 0.0000480633288546528

Table 2: The exact and numerical solutions of the FIE (6) using collocation method for n = 7.

X o(x) S, (x) o (x) =8 (x)|
Analytical solution Numerical solution Error
0 -0.6666666667 | -0.666666609273182 5.73934844094737x10°®
0.25| -0.2140042362 | -0.214003819445924 4.16754076221215x10”
0.5 0.5495737569 0.549573828162462 7.12624619314539x10°®
0.75 1.764166681 1.76416638538647 2.95613527656613x10”
1 3.624375770 3.62437588929795 1.19297951517439x10”

Example 2: Use the collocation method to solve the following integral equation,
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% 5 i _ay 2 2 T 1,4 4 3ain| %
¢(x)—£x sin(xy) ¢(y ) dy =3x > —2x cos(ax j+znx cos(Ex j—;zx sin (EX ] (7

where the exact solution is given as ¢ (x) = x 2.
Solution: Suppose that the approximate solution takes the form

5,(0=3 C. ).

We take,

3 4

n=5,¢(x)=1, g,(Xx)=x, ¢, (x)=x2 ¢,(x)=x> ¢(x)=x

Substituting this approximate solution in the FIE (7) leads to,

3
S, (x )—_[x Ssin(xy) S, (y ) dy =3x?*-2x 2cos(%x j+%ﬁ2x 4 cos(%x j—zzx 3sin(%x J+ E (x,C,,...Cq)
0

To find the unknowns (C,C ,...,C ) in Sp(x) , we substitute by the points X, X, X, X, X;, taken in the
interval [0, @/2] such that the error is zero. Hence For x =0, one has C,=0.

For x=0.39269, one has

0.99561 C, +0.38813 C, +0.14886 C, - 0.05385 C, - 0.01502 C;=0.14886 .

For x=0.78539, one has

0.74534 C, +0.52587 C, +0.31667 C, +0.11221C, —0.10193 C. =0.31667.

For x=1.17809, one has

- 1.45819C, —1.22892 C, - 1.31929C, — 1.65353C, — 2.26882 C= - 1.31929.

For x=1.570796327, one has

-9.84413 C, - 8.31953 C, - 8.07895C, —8.41708C, — 9.08605 C; = - 8.07895.

Using Maple 18, we solve this linear system for the unknowns C,, C,, C,;, C,, Csto obtain the
values,

C, =-3.41245x10%°, C,=3.32217x10°, C,=0.99999, C,=1.47975x10®, C;=-4.71064x107.
So, we obtain the following approximate solution of the FIE (7),

Ss(x)z — 3.41245x10*° —3.32217x10°x + 0.99999x > —147975x10°® x*

— 4.71064 x10%x *.

Table 3 shows a comparison of the exact (analytical) solution ¢(x) of the FIE (7) against the
numerical solution Sy(x) for different values of x taken in the given interval [0, /2]. The error can be
determined as the absolute value of the difference between the exact solution and numerical solution
as shown in the fourth column of Table 3.
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X o(x) Ss(x) |¢’(X)_SS(X )|
Analytical solution Numerical solution Error

0 0 -3.4124528x10%° 3.4124528x10%°
7/14 0.050355124 0.050355124 2.1975532x10"°
/T 0.201420498 0.201420497 1.2595044x10°*°
3z/14 0.453196120 0.453196120 3.3556864x10™™°
277 0.805681992 0.805681991 2.3108902x107°
5z/14 1.258878113 1.258878114 3.8478842x10™"°
37/7 1.812784482 1.812784483 4.3573545x10*°
/2 2.467401101 2.467401100 3.3528462x10™°

Example 3: Solve the following integral equation using the collocation method

h 2

J' (x +1)°e” p(y )dy =e*-(x +1)° (e* " -1), 8)

0
where the exact solution is given by the function
p(x)=e".
Solution: Suppose that the approximate solution takes the form

n
X) = Z C o (X)
k=1
Where we take,
n=5,¢(x)=1, g,(Xx)=x, g, (x)=x2 ¢, (x)=x> g(x)=x".

That is, we have
S, (x)=C,+Cx +Cx*+C,x*+Ccx*
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Substituting this approximate solution in the FIE (8) leads to,

1

S, (x)+2 [e*7s, (y)dy =2x e +E(x ,C,,C,,C4,C, .Cy) .
0

That is,

(C1+C2x +Cx*+C, x*+Cx"* )— (x +1)’e” (C1+C2y +C,y?+C,y*+C.y"* ) dy =

O e

e*-(x +1)° (e -1)+E(x ,C,,C,,C,.C,.Cy),
Such that the last term represents the error. Thus we obtain the following linear system

-0.399824918C,-0.6115757236C, -0.46831018C, -0.3595163C, -0.2899C, =-1.319869971
-1.748717812C -1.123672626C ;0.8857324526C ,-0.7209458219C ,-0.5994269362C ~-3.46533101 8

-3.964622878C,-2.158717643C,-1.582922372C,-1.284807900C,-1.089741628C_ =-7.183554097
-7.446931425C, -3.988612652C,-2.769060075C,-2.153452421C,-1.785035352C,=-13.26835612

-12.74625463C,-7.000000002C, -4.746254626C,-3.507490746C, -2.716291600C, =-22.83794257
By using Maplel8 we solve this system, and we get

C, =1.00029591104090, C, =0.996100458779729,C, = 0.517993283065282,

C, =0.130265924169716,C, = 0.0735482263924198.

So, we obtain the following approximate solution of the FIE (8),

S¢(x )= 1.00029591104090 +0.996100458779729x + 0.517993283065282x 2+
0.130265924169716 x *+0.0735482263924198x “.

Table 4 shows a comparison of the exact (analytical) solution ¢(x) of the FIE (8) against the
numerical solution Sp(x) for different values of x taken in the given interval [0, 1]. The error
computed as the absolute value of the difference between the exact solution and numerical solution
as shown in the fourth column of Table 4.
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Table 4: The exact and numerical solutions of the FIE (8) using collocation method for n = 5.

X o(x) S5(x) [p(x)=Ss(x))
Analytical solution Numerical solution Error
0 1 1.00029591104090 | 0.000295911040899099
0.25 1.284025417 1.28401830875191 | 0.00000710824809146970
0.5 1.648721271 1.64872446586782 | 0.00000319486782474065
0.75 2.117000017 2.11696953211599 | 0.0000304848840078087
1 2.718281828 2.71820380344805 | 0.0000780245519536038

Example 4: Solve the following integral equation using the collocation method

1
(P(x)‘jx3exy§0(Y)dy=x2—x2ex+2x e*-2e*+2, ©)
0

where the exact solution is given as ¢ (X) = x 2.

Solution: By following the same steps in the last two examples, we solve this integral equation.
Thus we obtain the results shown in Table 5. This table shows a comparison of the exact (analytical)
solution ¢(x) of the FIE (9) against the numerical solution S,(x) for different values of x taken in the
given interval [0, 1]. The error can be determined as the absolute value of the difference between the
exact solution and numerical solution as shown in the fourth column of Table 5.

Table 5: The exact and numerical solutions of the FIE (9) using collocation method.

X o(x) S5(x) ()-S5 (x))
Analytical solution Numerical solution Error

0 0 0 0

7 0.02040816327 | 10.020408163265306 | 3.46944695195361x10™*
27 0.08163265306 | 50.081632653061224 | 1.38777878078145x10™"/
3/7 0.1836734694 0.183673469387755 | 2.77555756156289x10™/
4/7 0.3265306122 0.326530612244898 0

5/1 0.5102040816 0.510204081632653 0
6/7 | 0.7346938776 | 10.73469387755102 | 1.11022302462516 x10™*°
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4. The Galerkin method

Here we show how to apply the Galerkin method [18, 19] to solve FIE (2), to do so we approximate
the exact solution ¢(x) in the form

S, (x)=2" Ciyi(x) . (10)
i=1
Such that the functions wi1(X),w2(X), . . . ,wn(X) are linearly independent on the interval (a,b).
Substituting the approximate solution (10) in the FIE (2) leads to
b
S,(x)=f(x)+ ] K(xy)S,(y)dy+E (x.C,,C,..C,). (12)

a

Conceptually, the Galerkin method depends on n conditions to find the constants C,;,C,,...,C, of

approximate solution Sy(x). For this, we shall emphasize that the functions w1(X),p2(X), . . . ,wn(X)

need to satisfy the following orthogonal relation,

b

[ wi(0E(xC,.C,...C)dx=0 ,i=12,..,1. (12)
The formula (12) is called the basic rule of Galerkin method. Substituting equation (10) in the
formula (12) leads to the following n algebraic linear equations in n unknowns (C,,C,,,...,C ) as,

b

10 5.6 0 s, oy =0 @

a

A final step is to solve the resulting linear system (13) and obtain the approximate solution Sp(X).
Next we give some demonstration examples showing the method.

Example 5: Resolve the integral equation (6) using the Galerkin method.

Solution: Suppose that the approximate solution takes the form

Sa (X):ch v (x),
k=1
where we set
4

n=5, y,(xX)=1 w,(x)=x, w(x)=x> w,(x)=x° ws(x)=x"
Substituting this approximate solution in the FIE (6) leads to,

2

1
S, (x)+2 [e*s, (y)dy =2x e +E(x ,C,,C,,C4,C, .Cy) .
0

n

That is
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1
(C1+sz +Cx2+C x> +Cx* )+2.|. e (C1+C2y +Cy°+C,y*+C.y* ) dy =
0

2xe* +E(x ,C,,C,,C,,C,,C)).

Such that the last term represents the error. We have the following orthogonal relation

E% (x) [Ss(X)—ie*‘y Ss(y)dy—erx] dx =0

Thus we obtain the following linear system

3.172322538C, +1.408081421C, +0.885255052C, +0.64152406C, +0.50185506C, =2.

1.764241118C +0.861815568C ;+0.571205588C 30 .42785788C ,+0.34233931C ~=1.436563656 .
10.241414754C,+0.629599186C, +0.430716134C,+0.33033285C, +0.26903951C, =1.126872609.

0.962319396C, +0.497766101C, +0.34764558C, +0.27124052C, +0.2239804C,=0.92907290 .

0.78728608C, +0.41216593C, +0.29206880C ,+0.2308482C, +0.192718C,=0.7911991 .
By using Maplel8 we solve this system, and we get

C, =-0.652941489154673, C, =1.05430732275121,C, = 2.95705864541767,
C, =-1.22205159243499,C, =1.50046278908200.

So, we obtain the following approximate solution of the FIE (6),

S¢(x )= -0.652941489154673 +1.05430732275121x + 2.95705864541767x 2
-1.22205159243499 x *+1.50046278908200x .

Table 6 shows a comparison of the exact (analytical) solution ¢(x) of the FIE (6) against the
numerical solution S(x) for different values of x taken in the given interval [0, 1]. The error can be
determined as the absolute value of the difference between the exact solution and numerical solution
as shown in the fourth column of Table 5. By increasing the number of pointsfromn=5ton =7, we
obtain more accurate solution of the FIE (6) as shown in the fourth column of Table 7.
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Table 6: The exact and numerical solutions of the FIE (6) using Galerkin method for n=5.

X o(x) S5(x) (X ) =S (x))
Analytical solution Numerical solution Error
0 -0.6666666667 - 0.0137251775119934
0.652941489154673

0.25| -0.2140042362 | 0.217781866490212 | 0.00377763029021158

0.5 0.5495737569 | 0.554499308838600 | 0.00492555193860045

0.75 1.764166681 1.76033727975564 | 0.00382940124436160
1 3.624375770 3.63683567566122 | 0.0124599056612165

Table 7: The exact and numerical solutions of the FIE (6) using Galerkin method for n=7.

X o(x) Ss(x) |¢(X)_S7(X )|
Analytical solution Numerical solution Error
0 -0.6666666667 0.66611997336096 0.000546693305702117
-5
0.25| -0.2140042362 0.21397167787551 | 0.0000325583244857319
-4
0.5 0.5495737569 0.54958130831820 | 0.00000755141820640848
6
0.75 1.764166681 1.76411535722256 | 0.0000513237774431019
1 3.624375770 3.62377018995952 0.000605580040478504

Example 6: Resolve the FIE (7) by using the Galerkin method.
Solution: Suppose that the approximate solution of the FIE (7) takes the form
5.(x)= 3 C i (x),
where we set
n=5, y,(x)=L y,(X)=x, w(x)=x% w,(x)=x> ws(x)=x"
Hence, one has

— N

SS(X)_

We have the following orthogonal relation

x° sin(xy ) Sg(y ) dy =3x*—2x*cos (%x}%;ﬁ“ cos(%xj—nx‘“’ sin [%XJ+E(X,C1,...,CH).

0
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3 2
jx55|n(xy)S ) dy —3x?+2x *cos (Zx)—”—x“ cos(zxj+7zx3 sin (zxj dx =0.
) 2" ) 4 2 2

O =N [N
§

Thus we obtain the following linear system,
For i=1, one has
1.19566 C, + 1.39295C, + 1.59690C, + 1.92839C, + 2.43118C, = 1.59690.

For i =2, one has
2.5200 C, + 2.25855C, +2.37165C, + 2.72760C, + 3.32773C, = 2.37165.

For i =3, one has
3.89440 C, +3.36792C, + 3.43716C, + 3.86006C, + 4.61448C. = 3.43716 .

For i =4, one has
5.74584 C, + 4.92165C, + 4.95825C, + 5.49120C, + 6.47331C, = 4.95825.

For i =5, one has
8.38895 C,+ 7.16139C, + 7.16346C, + 7.86107C, + 9.17233C, = 7.16346.

we solve this linear system for the unknowns C,, C,, C;, C,, C; to obtain,8By using Maplel
C, =0.0000362, C, =-0.0004355,C, =1.0012002, C, =—-0.0011562,

C. =0.0003604,
So, we obtain the following approximate solution,
S, (x)=0.0000362-0.0004355 +1.0012002x* —0.0011562x> +0.0003604x*

Table 8: The exact and numerical solutions of the FIE (7) using Galerkin method.

X o(x) Ss(x) o (x) =S5 (x)]
Analytical solution Numerical solution Error

0 0 0.000036264 3.6264199x10”
/14 0.050355124 0.050341947 1.3176878x10°
1 0.201420498 0.201413158 7.3399980x10°
3r/14 0.453196120 0.453204407 8.2871713x10°
277 0.805681992 0.805692146 1.0153799x10°
Sx/14 1.258878113 1.258874759 3.353460x10°
3r/7 1.812784482 1.812772572 1.191060x10°
/2 2.467401101 2.467427845 2.674482x10”

Table 8 shows the values of the exact (analytical) solution ¢(x) of the FIE (7) against the numerical
solution S,(x) for different values of x taken in the given interval [0, w/2]. The error can be
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determined as the absolute value of the difference between the exact solution and the numerical
solution as shown in the fourth column of Table 8.
Example 7: Resolve the FIE (8) by using the Galerkin method.

Solution: Suppose that the approximate solution of the FIE (8) takes the form
sn(x):i Cy v (X)'
where we set

n=5, y,(X)=L w,(X)=x, v (x)=x? w,(x)=x> ws(x)=x"
Hence, one has

1

0
We have the following orthogonal relation

nyi (x) (Ss(x )—j'(x +1)°e™S,(y )dy —e* +(x +1)° (e”l—l)j dx =0.

0

we solve the resulting linear system for the unknowns C,, C,, C,;, C,, C;to 8By using Maplel
obtain,

C, =0.999578591660359 ,C, =1.00770410360354 ,C, = 0.469589761215411 ,
C, =0.202697460126136 , C, = 0.0382344696324625 ,

So, we obtain the following approximate solution of the FIE (8),
S (x ) = 0.999578591660359 —1.00770410360354x + 0.469589761215411x >+
0.202697460126136 x * +0.0382344696324625x *

Table 9: The exact and numerical solutions of the FIE (8) using collocation method for n = 5.

X o(x) S5 (x) (%) =S5 (x)
Analytical solution Numerical solution Error
0 1 0.999578591660359 | 0.000421408339641327
0.25 1.284025417 1.28417047884868 | 0.000145061848680461
0.5 1.648721271 1.64855492063378 | 0.000166350366220591
0.75 2.117000017 2.11711152619455 | 0.000111509194545167
1 2.718281828 2.71780438623791 | 0.000477441762088304
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Table 9 shows the values of the exact (analytical) solution ¢(x) of the FIE (8) against the
numerical solution Sp(x) for different values of X taken in the given interval [0, m/2]. The
error can be determined as the absolute value of the difference between the exact solution
and the numerical solution as shown in the fourth column of Table 9.

Example 8: Resolve the integral equation (9) using the Galerkin method.

Solution: By following the same steps in the last two examples, we solve this integral equation.
Thus we obtain the results shown in Table 10. This table shows the values of the exact (analytical)
solution ¢(x) of the FIE (9) against the numerical solution S,(x) for different values of x taken in the
given interval [0, 1] for n = 5. The error can be determined as the absolute value of the difference
between the exact solution and numerical solution as shown in the fourth column of Table 10.

Table 10: The exact and numerical solutions of the FIE (9) using the Galerkin method.

X o(x) S5(x) (%) =S, (x))
Analytical solution Numerical solution Error
0 0 0 0

/7 | 0.02040816327 | 0.020408163265306 | 5.89805981832114 x10Y
2

2/7 | 0.08163265306 | 0.081632653061224 | 1.94289029309402x10'°
7

3/1 18367346940 | 0.183673469387755 | 3.05311331771918x10™'°

4/7 | 0.3265306122 | 0.326530612244898 | 2.77555756156289x10

5/1 0.5102040816 | 0.510204081632653 | 1.11022302462516 x10™'°

6/7 0.7346938776 | 0.734693877551020 | 1.11022302462516 x10™*°

5. Discussion and conclusion

In this paper we implemented both the collocation and the Galerkin methods to numerically solve the
second kind FIEs (6), (7), (8) and (9) of continuous kernel. We measure the error of the
computations as the absolute value of the difference between the exact (analytical) solution ¢(x) and

numerical solution Ss(x). Hence, comparing the error of the numerical computations using the
collocation method shown in the fourth column of Tables 1, 2, 3, 4, 5 against the corresponding
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computations using the Galerkin method shown in the fourth column of Tables 5, 6, 7, 8, 9, 10 one
should notice that the computation error of the collocation method is much smaller than the one for
the Galerkin method. Therefore at least for the second kind FIEs (6), (7), (8) and (9) that we
consider here and for considerably a few interpolation points (n=5) in the given interval, one could
claim that the collocation method performs better than the Galerkin method. Therefore one can
conclude that the illustrated example for second kind Fredholm integral equation of continous kernel
shows that the collocation method seems to converge faster than the Galerkin method.
Conceptually, the difference in the performance between the collocation and Galerkin method is due
to the fact that, in the collocation method we force the error to vanish at the collocated points Xi, Xz, .
., Xn . Whereas in the Galerkin method we make the error orthogonal to n given linearly
independent functions w1 (X),w2(X), . . . ,wn(X) onan interval (a,b).
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