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A matrix continued fraction is a matrix representation of a continued fractions, It 

has the following formula:  

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎𝑛

 

The matrix can be used to convert a continued fraction to a rational number by 

using matrix multiplication to calculate the matrix product of the continuous 

fraction matrix and the vector [1, 0]. Additionally, it can be used to calculate the 

convergent of a continued fraction by using matrix multiplication to calculate the 

matrix product of the continuous fraction matrix and the vector [1, 1]. It can also be 

used to represent and calculate the solutions of some type of recursive equations. 

The use of matrix representation of continued fractions allows for efficient 

computation of continued fraction expansions using matrix multiplication, which 

can be easily parallelized in parallel computation algorithms. This can lead to 

significant speedup in the computation of continued fractions and can be useful in 

various fields such as computer graphics. 
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1 Introduction  

Continued fractions have many important properties and 
applications in mathematics, including in number 
theory, Diophantine equations, and the theory of 
irrational numbers[1]. They can also be used to 
symbolize a variety of mathematical operations, such as 
the logarithm, trigonometric functions, and the Riemann 
zeta function. In matrix form, continued fractions are 
used in the study of linear recurrent sequences, which 
are sequences of numbers that are determined by a fixed 
set of initial conditions and a set of recurrence relations. 
They have many applications in areas such as statistics, 
physics, and control theory[2].A matrix continued 
fraction is a type of representation for matrices, similar 
to how continued fractions represent real numbers.        
It is a method of approximating a matrix as the    
product of simpler matrices. The matrix continued 
fraction provides a  way  to  decompose a  given  matrix  

 

 

into a series of simple matrices that can be easier to 
work with[3, 4]. 

Some applications of matrix continued fractions 
include[5, 6]: 

1. Solving linear equations: it is possible to 
resolve systems of linear equations using 
matrix continuing fractions. 

2. Eigenvalue approximation: to roughly 
determine a matrix's eigenvalues, one can use 
matrix continued fractions. 

3. Matrix inversion: you may quickly determine a 
matrix's inverse by using matrix continued 
fractions. 
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4. Matrix polynomials: matrix continued fractions 
can be used to represent matrix polynomials, 
which are polynomials in which the 
coefficients are matrices. 

5. Control systems: matrix continued fractions 
can be used in the design of control systems, 
such as linear quadratic regulator (LQR) 
controllers. 

6. Signal processing: matrix continued fractions 
can be used in digital signal processing to 
model linear systems. 

7. Orthogonal polynomials: matrix continued 
fractions can be used to compute orthogonal 
polynomials, which have important 
applications in numerical analysis and 
computational mathematics. 

Continued fractions and matrices are two important 
mathematical concepts with an extensive variety of 
usage scenarios across multiple fields. Continued 
fractions, by means of way of expressing numbers, have 
many properties and applications, particularly in 
number theory and irrational numbers. Matrices are a 
way to represent and manipulate large sets of data and 
equations, and have many applications in linear algebra, 
statistics, physics, and engineering [7]. 

1.1 Continued Fraction Formula  

A continued fraction is a representation of the form     
[3, 4]: 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎3

 

 

a0, a1, a2, and a3 are all integers. This is a way of 
representing a rational number as the sum of an integer 
and a sequence of nested fractions. 

It is also represented as [a0, a1, a2, a3,] 

For example, the continued fraction representation of 
the number 2.5 (which is equal to 5/2) is [2, 2]. 

• Derive an Equation for Continued Fractions Formula 

A type of expression that expresses a rational number as 
the combination of an integer and a series of fractional 
terms is called a Continued Fraction. We can derive a 
general equation for a continued fraction by breaking it 
down into its component parts. 

 

 

Let us examine a type of continued fraction expressed 
as [5]: 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎3

 

where the coefficients, 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are integers. 

𝑎0 +
𝑏1

𝑎1 +
𝑏2
𝑏3

𝑎3 +⋯

 

where a1and b1can be any complex numbers. 

We can start by defining a sequence of nested fractions 
as: 

f1 = a1 

f2 = a2 + (
1

𝑓1
) 

f3 = a3 + (
1

𝑓2
) 

fn = an + (
1

𝑓𝑛
-1) 

Here n is the sequence's number of terms. 

Now we can substitute this sequence of nested fractions 
into the continued fraction equation: 

a0 + (1/f1) 

This is the general equation for a continued fraction. 

Alternatively we can use the recursive relationship for 
the continued fraction, where: 

𝑎𝑛 = 𝑝𝑛 𝑞𝑛⁄ = 𝑝𝑛+1 − 𝑞𝑛 𝑞𝑛+1,⁄  

where 𝑎𝑛 and 𝑞𝑛 are integers, so the equation becomes: 

 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎𝑛

 

 

This recursive relationship is useful for calculating the 
value of a continued fraction in the next step. The 
process is repeated until the remainder is zero and 
convergent. 
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For example, the number 𝑝𝑖  can be represented as a 
continued fraction as follows: 

𝜋 = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1 + ⋯

 

 

To determine the Continued Fraction expression of a 
number, you can use the Euclidean algorithm to find the 
quotient and remainder at each step. The integer part of 
the quotient becomes the next term in the continued 
fraction, and the remainder is used as the numerator 

Here is an example of how to determine the Continued 
Fraction expression of π through the use of the 
Euclidean Algorithm: 

π = 3.14159265... 

Start with the numerator as π and the denominator as 1. 

π / 1 = 3.14159265... with a remainder of 0.14159265... 

Use the integer part of the quotient as the next term in 
the continued fraction, and the remainder as the 
numerator in the next step. 

 

3 + 0.14159265... / 1 = 3 + 0.14159265... 

Repeat the process with the new numerator and 
denominator. 

0.14159265... / 1 = 0.14159265... , With a remainder of 
0.00159265... 

Repeat the process until the remainder is zero. 

+ 0.00159265... / 1 = 7 + 0.00159265...  

The expression of π as a continued fraction is [3, 7, 15, 
1, 292, ...] 

Note that this is only an example of the first few steps to 
find the representation of π, and the exact representation 
can be infinite and not a finite number of terms .Other 
continued fraction expansions. Continued Fractions can 
also express other mathematical constants such as π and 
the square root of 2, along with certain irrational 
numbers. As an illustration, π has the Continued 
Fraction expansion [3; 7, 15, 1, 292….,], while the 
square root of 2 is expressed as [1; 2, 2, 2, 2, ...]. These 
expressions can offer precise approximations for the 
values of these mathematical constants. 

 

2. Materials and Methods 

2.1 Applications of Continued Fractions 

Continued fractions have many applications in 
mathematics and other fields. Some of the most notable 
applications include: 

• Continued fractions provide accurate 
approximations of irrational numbers, 
particularly in computer arithmetic and 
numerical analysis. This is particularly useful 
in computer arithmetic and numerical analysis. 

• Continued fractions can solve specific 
Diophantine equations, which are equations 
that seek integer solutions. 

• Number theory: Continued fractions have been 
used to prove important theorems in number 
theory, such as the uniqueness of continued 
fraction expansions for certain numbers. 

• Control theory: In control theory, continued 
fractions represent a system's transfer function, 
indicating its behaviour to varied inputs. 

• Cryptography: Continued fractions have been 
used in the design of certain cryptographic 
systems, such as the RSA algorithm. 

• Quantum Mechanics: Continued fractions can 
also be used to find the energy levels of a 
quantum mechanical system. 

• Other fields: Continued fractions are also 
employed in fields including signal    
processing, dynamical systems, statistics, and 
probability theory. 

2.2 The Set of Continued Fractions   

2.2.1 Derivation of Equation of the Set of Continued 
Fractions 

A group of related continued fractions is called a 
set of continued fractions due to their shared 
property or connection. The specific form of the 
equation for a set of continued fractions will 
depend on the specific property or relationship 
being considered. For example; let's consider the 
set of continued fractions that represent the square 
roots of integers. We can derive an equation for this 
set of continued fractions by starting with the 
equation for a general continued fractions [9]: 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎3
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If we let x be the square root of an integer, we can 
rewrite the equation as: 

x=𝑎0 +
1

𝑎1+
1

𝑎2+
1

..+
1
𝑎3

 

We can now substitute the square root of an integer, 
x, into the equation: 

√𝑛 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎3

 

where n is an integer. 

Another example is the set of continued fractions 
that have convergent that form a Fibonacci 
sequence, and each convergence represents the 
relationship between two consecutive Fibonacci 
numbers. In general, the set of continued fractions 
can be represented by the recursive relationship for 
the continued fraction, where [10]: 

𝑎𝑛 = 𝑝𝑛 𝑞𝑛⁄ = 𝑝𝑛+1 − 𝑞𝑛 𝑞𝑛+1,⁄  

and where pn and qn are integers, so the equation 
becomes: 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎𝑛

 

This recursive relationship is useful for calculating 
the value of a continued fraction and for finding its 
convergent. 

An example of a set of continued fractions is the set 
of continued fractions that represent the square 
roots of integers. These continued fractions have 
the form: 

√𝑛 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎3

 

 

Where n is an integer, and  𝑎0, 𝑎1, 𝑎2, 𝑎3, … are 
integers that can be determined by the method of 
continued fraction. 

For instance, this is how √2 is represented as a 
continuing fraction:  

√2 = [1, 2, 2, 2, ...] 

This can be expressed mathematically as: 

√2= 1 +
1

2+
1

2+
1

2+
1

2+
1

2+
1

1+⋯

 

Another example is the continued fraction 
representation of √3: 

√3 = [1, 1, 2, 1, 2, ...] 

This can be expressed mathematically as: 

 

√3= 1 +
1

1+
1

2+
1

1+
1

2+
1

1+
1

1+⋯

 

√3 = 1 + (1/(1 + (1/(2 + (1/(1 + (1/(2 + ...))))))) 

As you can see, both examples are infinite 
continued fractions, which is a good indication that 
the square roots of integers are irrational numbers. 

Another example of set of continued fractions is the 
set of continued fractions that have convergent that 
form a Fibonacci sequence, where each convergent 
is the ratio of two consecutive Fibonacci numbers. 
The continuing fraction of the golden ratio is what 
these are called. 

φ=[1,1,1,1,1,1,...]     [11] 

This can be expressed mathematically as: 

φ = 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + ⋯

 

 

φ = 1 + (1/(1 + (1/(1 + (1/(1 + ...)))))) 

As you can see, it never ends, which is a good 
indication that it is an irrational number. 

2.3 Continued Matrix Formula  

A number is mathematically represented as the sum of 

an integer and a series of nested fractions using a 

continuing fraction formula, also known as a continued 

fraction. Matrixes, a different kind of mathematical 

object utilized in linear algebra, are not directly related 

to it. A rectangular array of numbers arranged in rows 

and columns is known as a matrix. A matrix's elements 

are denoted by the letter  𝑎𝑖𝑗 where i stand for the row 

index and j for the column index. The specific form of 
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an equation for a matrix will depend on the operation or 

relationship being considered[10]. 

For example, the equation for matrix addition is: 

C = A + B 

Each element of the resulting matrix C is equal to the 

corresponding element of matrix A multiplied by the 

corresponding element of matrix B, where A, B, and C 

are all matrices of the same size. 

The matrix multiplication equation, which is another 

illustration, is as follows: 

C = AB, 

 

where A and B are matrices, and C is the resulting 

matrix, this operation is only possible if the number of 

columns of the first matrix is the same as the number of 

rows of the second matrix. As you can see, there is no 

direct relationship between continued fractions and 

matrices; they are used in different fields of 

mathematics. The continued fraction expansion of a 

number can be represented using matrices. The matrix 

representation of a continued fraction is called a 

continued fraction matrix. The continued fraction matrix 

of a number x can be found by the following recursion: 

Let 

  

A0 = [1, x], and for n > 0, let An = [A {n-1}, 0] * [0, 1; 1, 

(1/x)], 

 

The continued fraction matrix of x is the matrix An, 

where n is the number of terms in the continued fraction 

expansion of x. 

For example, let's say we want to find the continued 

fraction matrix of the number 

 x = pi. The continued fraction expansion of pi is [3; 7, 

15, 1, 292, 1, 1, ...].  

Using the recursion above, we can attain the continued 

fraction matrix of pi is: 

 

A0 = [1, pi] A1 

 

= [A0, 0] * [0, 1; 1,1/ (1/ pi)] 

 

= [1, pi; 0, 3] A2 

 

= [A1, 0] * [0, 1; 1, 1/ (1/(pi - 3))] 

 

= [1, pi; 0, 3; 0, 7] A3 

 

= [A2, 0] * [0, 1; 1, 1/(1/(pi - 3 - 7/3))] 

 

= [1, pi; 0, 3; 0, 7; 0, 15] 

 

The matrix An will be the matrix representation of the 

continued fraction of pi. It should be noted that the 

above representation is a general formula, and that 

different types of continued fractions might have 

different matrix representation. 

The prior quotient enables us to think about matrix 

continuing fractions for a family of pq matrices called 

Bi. 

Πn =
1

𝐵1 +
1

𝐵2 +
1

𝐵3 +
1
1

. . +𝐵𝑛

 

Definition 1: If every element of  𝐵𝑘 is satisfied, then 

the continued fractions are said to be true. 𝐵𝑘 > 0. A 

continued fraction is called periodic if there exists a 

positive integer k such that  𝐵𝑘+𝑝 = 𝐵𝑘 for all  𝑝 >

0, where p is a positive integer. In other words, a 

continued fraction is periodic if it has a repeating 

pattern in its terms[13]. 

 

• bp,q(z) is a polynomial of degree sk≥1;  

• bp,1(z), ..., bp, q=1(z) and b1, q(z), ..., bp=1, 

q(z) are polynomials of degree smaller than 

sk&1; all bi, j(z), i=1, ..., p=1; j=1, ..., q=1 are 

polynomials of degree smaller than sk=2. 

• All bi, j(z), i=1, ..., p-1; j=1, ..., q-1 are 

polynomials of degree smaller than sk-2. 
 

Definition 2: A regular continued fraction is a true 

continued fraction where all sk equal 1. This continued 

fraction type is also known as a simple continued 

fraction. It is important to note that not all true 

continued fractions are regular continued fractions, as 

some may have numerator terms that are not equal to 1.  

For a regular continued fraction, the 𝐵𝑘(𝑧) are of the 

following form, with δ, γ, β, α constants, and nonzero 

[13]: 

 

𝐵𝑘 (z)=(

0 0 𝛾𝑘,1
0. . 0 𝛾𝑘,𝑝=1
𝛿𝑘,1 𝛿𝑘,𝑞=1 𝛼𝑘𝑧 + 𝐵𝑘

) 

We will prove the considered functions always yield a 

true continued fraction, assumed to be regular. 

 

2.4 Matrix-Valued Continued Fractions 

 

Matrix-valued continued fractions (MVCF) are a 

generalization of matrix continued fractions, in which 

the matrices Ai in the continued fraction are not just 

scalar values, but are themselves matrix-valued 

functions. These functions can be defined on a domain, 

such as the complex plane, and the MVCF represents 

the matrix-valued function as a ratio of matrix-valued 

polynomials. MVCF have applications in the analysis of 

matrix-valued functions, such as in the study of matrix 

functions and operator theory. They can be used to 

represent solutions of certain matrix-valued differential 
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equations, and to approximate matrix functions in a 

numerically stable way. 

The equation of a MVCF is similar to the one of matrix 

continued fraction, but the matrices Ai are matrix-valued 

function. 

 

A(z) = A0 + [A1(z), A2(z), ..., An(z)] 

 

Where A(z) is the matrix-valued function being 

represented by the MVCF, A0 is a matrix and  

[A1(z), A2(z), ..., An(z)] 

 

Is the matrix-valued fraction, also known as a matrix-

valued continued fraction? 

The matrix-valued fraction is defined recursively as: 

 

[A1(z), A2(z), ..., An(z)] = A1(z) + A2(z) * [A3(z), A4(z), 

..., An(z)] 

 

Where A1(z) is a matrix-valued function, A_2(z) is a 

matrix-valued function and [A3(z), A4(z), ..., An(z)] is a 

matrix-valued fraction. 

 

2.5 The Algorithm 
  

There are several algorithms that can be used to convert 

a real number into its continued fraction representation. 

One of the most common algorithms is the Euclidean 

algorithm. 

The Euclidean algorithm for continued fractions 

proceeds as follows: 

1. Start with a real number x. 

2. Take the integer part of x, and call it a0. 

3. Subtract a0 from x to get the fractional part, and 

call it x1. 

4. Invert x1 to get 1/x1, and call it x2. 

5. Take the integer part of x2, and call it a1. 

6. Subtract a1 from x2 to get the fractional part, 

and call it x3. 

7. Repeat steps 4-6 until a desired level of 

accuracy is reached. 

8. The desired continued fraction representation of 

x is a0 + 1/(a1 + 1/(a2 + 1/(a3 + ... ))) 

9. Alternate algorithm is the Stern-Brocot tree 

which is a binary tree in which the vertices are 

the continued fractions. 

10. The algorithm for generating Stern-Brocot tree 

proceeds as follows: 

11. Start with the two fractions 0/1 and 1/0. 

12. At each step, two fractions are added to the tree, 

one where the numerator and denominator of 

the left fraction are added together. , and 

another that is the sum of the numerator and 

denominator of the right fraction. 

Repeat step 2 until a desired level of accuracy is 

reached. 

The Stern-Brocot tree algorithm can be used to 

determine the best rational approximation of an 

irrational number as well as the continuing fraction 

representation of any real number. 

In summary, there are different algorithms that can be 

used to convert 

 
2.5.1 Matrix-Valued Continued Fractions Algorithm  

 

There are different algorithms to compute matrix-valued 

continued fractions. One of the most commonly used 

algorithms is the modified Lentz's algorithm. The basic 

idea of the algorithm is to recursively compute the 

matrix-valued fraction using the following steps: 
 

1. Start with an initial approximation of the 

matrix-valued function, A0. 

2. For i = 1 to n: 

 
• Compute the matrix-valued function Bi(z) = 

Ai(z)A{i-1}(z) 

• Compute the matrix 𝐶𝑖 = 𝐵𝑖
−1(𝑧)  

• Compute the matrix-valued function Di (z) = Ci 

Ai(z) 

• Update the approximation of the matrix-valued 

function A[12](z) = Di(z) + Ci A0 

• The final approximation of the matrix-valued 

function is An(z) 

This algorithm is widely used as it has fast convergence 

properties and requires only matrix-vector 

multiplications and inversions of matrix-valued 

function. 

It's worth noting that this algorithm has the assumption 

that the matrix-valued function Ai(z) is invertible for all 

z in the domain, also the matrix-valued functions Ai(z) 

should have the same dimensions. 

Also, it is important to note that the above algorithm is a 

modified version of Lentz's algorithm that is suitable for 

matrix-valued functions. The original Lentz's algorithm 

was designed for scalar-valued functions. 

 

2.5.2 Example Matrix-Valued Continued Fractions 

Algorithm [15] 

  

Here is an example of how to use the modified Lentz's 

algorithm to compute a matrix-valued continued 

fraction for a matrix-valued function A(z): 

Let's assume that A(z) is a 2x2 matrix-valued function 

defined on the complex plane and we want to 

approximate it using a matrix-valued continued fraction 

of order n = 4. 

1. Start with an initial approximation A0 = I, where 

I is the 2x2 identity matrix. 

2. For i = 1 to 4: 

• Compute the matrix-valued function 𝐵𝑖(𝑧) = 

Ai(z)A{i-1}(z), where Ai(z) is given. 

• Compute the matrix 𝐶𝑖 = 𝐵𝑖
−1(𝑧), where Bi(z) 

is given. 
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• Compute the matrix-valued function Di(z) = Ci 

Ai(z) 

• Update the approximation of the matrix-valued 

function A[12](z) = Di(z) + Ci A0 

The final approximation of the matrix-valued function is 

A4(z) 

It's important to note that the above example is a 

simplified one and in practice, the matrix-valued 

function A(z) and the matrices Ai(z) are typically 

defined in terms of more complicated expressions and 

operations. Also, the values of z for which we want to 

approximate the matrix-valued function A(z) have to be 

chosen carefully, taking into account the convergence 

properties of the algorithm. 

Also, it's good to mention that, computing the inverse of 

a matrix-valued function can be computationally 

expensive and some approximations methods exist to 

overcome this problem. 

 
2.6 The Properties of the Continued Fraction Matrix  

A square matrix whose entries represent the coefficients 

of a continuing fraction expansion is known as a 

continued fraction matrix. These matrices have several 

properties, including: 

1. They are triangular: The entries above the 

main diagonal are all zero. 

2. They are invertible: Any continued 

fraction matrix can be inverted, and the 

inverse is also a continued fraction matrix. 

3. They satisfy the matrix equation: A =T n-1 

A0, where Tn is the continued fraction 

matrix and A0 is the initial matrix. 

4. They have the property of semi-groups: 

The product of two continued fraction 

matrices is also a continued fraction 

matrix. 

5. They are closely related to the Fibonacci 

sequence: The Fibonacci numbers can be 

calculated using a continued fraction 

matrix, and the continued fraction matrix 

can be calculated using the Fibonacci 

numbers. 

 
Here are some properties of the continued fraction 

matrix : 

 
1. Uniqueness: For a given real number, 

there is only one continued fraction 

representation . 

2. Convergence: 

A real number converges to its continuing 

fractional representation 

3. Periodicity: A continued fraction 

representation is periodic if and only if the 

number is a rational . 

4. Monotonicity: The terms of the continued 

fractional representation of a number are 

monotonically decreasing in magnitude . 

5. Inevitability: A number's continuing 

fraction expression can be inverted to get 

the number's decimal representation. 

6. Continued fraction expansion: Using a 

procedure called the Euclidean algorithm; 

one can find the specific continued 

fraction approximation for each real 

integer. 

 

2.6.1 A Numerical Example of the Properties of a 

Continued Fractions Matrix [18]. 
A numerical example of the properties of a continued 

fraction matrix can be demonstrated using the matrix 

A = [a b; c d] 

 

Let's assume that the entries of this matrix are the 

coefficients of the continued fraction expansion of a real 

number. 

1. Triangular property: 

A = [a b; 0 d] 

As you can see from the matrix A, the entries above the 

main diagonal are all zero. 

2. Inevitability property: 

A-1 = [d -b; -c a]/ (ad-bc) 

The inverse of matrix A is also a continued fraction 

matrix. 

3. Matrix equation property: 

A1 = [a b; c d] * A0 

Where A_1 is the next matrix in the continued fraction 

expansion and A_0 is the initial matrix. 

4. Semi-groups property: 

A3 = A2 * A1 

The product of two continued fraction matrices is also a 

continued fraction matrix. 

5. Fibonacci sequence property: 

The Fibonacci numbers can be calculated using 

the continued fraction matrix, for example; 

[F(n+1) F(n)], [F(n) F(n-1)] = [F(n+1) F(n)] * 

[1 1; 1 0]             [21] 

The continued fraction matrix can also be calculated 

using the Fibonacci numbers. 

Note that this is just an example; the entries of the 

matrix may vary depending on the continued fraction 

expansion you are working with. 

 
Theorem 1: Every true continued fraction converges to 

some matrix [22].   
 

Not all genuine continuing fractions reach matrices. 

Real numbers can be presented as an endless or finite 

sequence of rational numbers using continued fractions. 

While some real numbers can be defined by infinitely 

long continued fractions that do not converge to a single 

value, other real numbers can be represented by finite 

continued fractions. 
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However, certain types of continued fractions, such as 

regular continued fractions, do converge to a matrix. 

The properties of the continued fraction matrix can then 

be used to study the properties of the corresponding real 

number. 

The proof typically starts by assuming that the 

continued fraction expansion has the form: 

 

b0 + 1 / (b1 + 1 / (b2 + 1 / (b3 + ... ))), 

 

where b0, b1, b2, b3, are the coefficients in the 

continued fraction expansion. 

The corresponding matrix for this continued fraction is 

defined as: 

 

A = [b0 b1; 1 b2], 

 

T = [1 b0; 0 1], 

 

T2 = [1 b0; 0 1] * [1 b0; 0 1] 

 

= [1 b0 + 1; b0 1], 

 

T3 = [1 b0 + 1; b0 1] * [1 b0; 0 1] 

 

= [1 b0 + b1 + 1; b0 + 1 b2], ... 

 

By repeatedly applying the matrix equation, it can be 

shown that the matrix  Tn converges to a specific 

matrix, as n approaches infinity. The value of the 

continuing fraction can sometimes be determined using 

this matrix, also referred to as the limiting matrix. The 

demonstration is successful because this matrix is 

distinct for just about any given continuing fraction. It's 

worth noting that for true continued fractions, the bn are 

positive integers, this is the key to the matrix converges. 
 

Theorem 2: Assuming that the continuation from (F) is 

a regular multi-index of size p, where n̅=(n1,....,n 2),  

 
 (ϜQ

K
− Pk) = O(1/z

ni+1), i = 1, … . , p 

(ϜQK − Pk) = O(1/z
n+1 ̅̅ ̅̅ ̅̅ ̅), i = 1, … . , p 

 

 Proof: The index describes aslo the regular index  of  

size q ,m̅ = (m1 −m2) , and because QK is expanded in 

the basis h0 , ..., hk , the amount  i of QK is of degree at 

most mi for i=1, ..., q.  

We have  

 
(ϜQK − Pk) = (F − Πk)QK 

 
 Using theorem  

(F − Π_k )i,j = O(1/z
ni
k+mj

k+1) 

 
With respect to z, it follows that, for i=1, ..., p, 

(FQk − Pk(z))t =∑ 0(
1

z
ni+mj+1

q
j=1 )zmj = 0(

1

zni+1
) 

And from this, the weak approximation's conclusion is 

found. 

Since this, the approximation of F is either Πk or the 

two matricesQk and Pk , 

With Πk = Pk (Qk)
−1 satisfying  

 

(F − Πk)i,j = O(
1

zni
k+mj

k+1
) , i =   1, … , p ,     j = 1, … , q 

 
FQk − Pk =  O(1/z

n+1 ̅̅ ̅̅ ̅̅ ̅),   
 
a matrix with entries of type 1z* on the right-hand side 

of the second formula, where powers of 1/z are standard 

multi-indices on each row and column, reducing in the 

rows and rising in the columns, starting from n̅indicated 

by k in the first column, i.e., writing only the power and 

authority of the matrix, 

O (
1

zn+1 ̅̅ ̅̅ ̅̅ ̅)we  get , if k = vp + μ, o ≤ μ < p 

 

(

 
 

v + 1 … v + 1 v + 2 …
v + 1 … v + 1 v + 2 …
. … . . . . .
v … v + 1 . . . .
v v v + 1 . . . .)

 
 

 . 

 

A matrix Pade approximant of F is created as a result of 

the continuing fraction, and because Pk is a vector 

polynomial, it is necessarily the polynomial part of FQk. 

 

i=1,….,p;     j =1,….,q, 

 

fi,j = ∑
fi,j
v

zv+1
∞
v=0   , Θi,j(x

v) = fi,j
v  

 

it respects, every functional acting on x, k defining (m1 , 

..., mq) and (Pk)i be there  the ith component of Pk 
 

i=1,…,p , (Pk)i(z) = ∑ = Θi,j
q
j=1 (

(QK)i(x)−(Qk)j(z)

x−z
 

 

Pk(z) = ∑ = Θ
q
j=1 (

(QK)i(x)−(Qk)j(z)

x−z
) , deg (Pk)i = mi − 1. 

 

From this formula or from Pk=P[FQK], the degree of the 

components (Pk)i  , i=1, ..., p, is recognized: each 

(Qk)j  is of degree mj for j=1, ..., q, so (Pk)i is the 

summation of polynomials of degree correspondingly 

mj&1, and so is of degree lower than or equivalent to  

m1 &1 for all i among 1 and p. 
 

 Theorem 3: If and only if F is a weakly perfect matrix, 

the continuing fraction inferred from F is regular [24]. 
 

A weakly perfect matrix continued fraction is a specific 

type of matrix continued fraction that follows a specific 

pattern. A weakly perfect matrix continued fraction able 

to be signified as: 
 

F = [A0, A1, A2, ..., An] 
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where A0 is a scalar or matrix, A1, A2, ..., An are 

matrices, and 𝐴𝑖
−1 exists for all i > 0. 

A regular matrix continued fraction is a matrix 

continued fraction that follows a specific pattern that is 

determined by the properties of the matrices Ai. A 

weakly perfect matrix continued fraction is regular 

because it follows a specific pattern that is determined 

by the properties of the matrices Ai. It follows that the 

continued fraction derived from F must be a weakly 

flawless matrix continued fraction in order for it to be 

true that now the continued fraction is regular. 

 

An example of a weakly perfect matrix continued 

fraction is the following: 

 

F = [A0, A1, A2, A3] ,where; 

 

A0 = [1, 2], A1 

 

= [3, 4], A2 

 

= [5, 6], A3 

 

= [7, 8] 

 

In this example, A_0 is a 2x2 matrix and A1, A2, A3 are 

also 2x2 matrices. The inverse of A1, A2, A3 exist, so the 

continued fraction is weakly perfect. 

Since F is a weakly perfect matrix continued fraction, its 

continued fraction will be regular. It can be represented 

as: 
 

F = [A0; A1, A2, A3] 

 

=A0 + 1/(A1 + 1/(A2 + 1/A3)) 

 

This continued fraction can be used to represent 

solutions to certain types of matrix 

 

Here is an example of a numerical matrix continued 

fraction that is both weakly perfect and regular: 
 

F = [A0, A1, A2, A3] 

 

where A0 = [1, 2; 3, 4], A1 

 

= [5, 6; 7, 8], A2 

 

= [9, 10; 11, 12], A3 

 

= [13, 14; 15, 16] 
 

In this example, A0, A1, A2, A3 are all 2x2 matrices and 

inverse of all matrices exist, it is a weakly perfect 

matrix continued fraction. 

Thus the continued fraction is regular and can be 

represented as: 
 

F = [A0; A1, A2, A3] 
 

= A0 + 1/(A1 + 1/(A2 + 1/A3)) 

The continuing fraction derived by F remains hence 

steady if and only if F is a weakly ideal matrix. The 

same is true in this instance. 

 
2.7 Applications for Matrix Continued Fractions 

(MCF) 

 
Matrix continued fractions (MCF) have a varied range 

of applications in several fields, such as control theory, 

signal processing, and computer science. Some of the 

most notable applications include: 

1. Linear systems control: MCF can be used to 

represent systems of linear differential 

equations, which are commonly used in control 

systems. The MCF representation can be used 

to design controllers for linear systems, and to 

analyze the stability and performance of the 

system. 

2. Signal processing: In the frequency domain, 

MCF may be used to represent signals and 

systems. This form can be used to create digital 

signal filters and examine the frequency 

response of a system. 

3. Computer science: MCF can be used to 

represent systems of polynomials, which are 

commonly used in computer science. This 

representation can be used to analyze the 

properties of polynomial systems, and to 

design algorithms for solving polynomial 

equations. 

4. Robotics: MCF can be used to represent 

systems of linear differential equations, which 

are commonly used in robotics. The MCF 

representation can be used to analyze the 

dynamics of robotic systems, and to design 

controllers for robotic systems. 

5. Linear Algebra: MCF can be used to represent 

the matrix and its inverse; this representation 

can be used to explain linear systems and 

inversion of matrices. 

6. Optimization: MCF can be used in 

optimization, MCF can be used to resolve 

linear least squares problem, and to find the 

maximum of a linear function subject to linear 

constraints. 

It's worth noting that the application of MCF is not 

limited to these examples and it can be used in many 

other areas. 

 

2.7.1 Solution of Matrix Equations by Branching 

Continued Fraction  
 

The equation to solve matrix equations by branching the 

continuous fraction is called the "Matrix Fractional 

Description (MFD)". The general form of the MFD 

equation is [26]: 
 

X = (A - BK) (-1) (C + DK) 
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Where X is the unknown matrix, A, B, C, D, and K are 

known matrices and ^(-1) denotes the matrix inverse.This 

equation canister be used to find the optimal 

fundamental of the matrix equation by using the 

continuous fraction expansion. The optimal value of the 

matrix K can be found by iteratively solving the 

equation and updating the values of K . 

Here is a simple example to illustrate the use of the 

Matrix Fractional Description (MFD) equation to solve 

a matrix equation : 

 

Given the following matrix equation : 

 

X = (A - BK) (-1) (C + DK) 

 

Where: 

 

A = [[2, 0], [0, 3]] 

 

B = [[1, 2], [3, 4]] 

 

C = [[1, 0], [0, 1]] 

 

D = [[1, 2], [3, 4]] 

 

K = [[k1, k2], [k3, k4]] (unknown matrix) 

To find the solution for X, we need to find the optimal 

value of the unknown matrix K. We can do this by using 

the MFD equation and iteratively updating the values of 

K until a satisfactory solution is found . 

 

Let's start with an initial guess for the values of K: 

 

K = [[0, 0], [0, 0]] 

 

Using the MFD equation, we can calculate the first 

iteration of X 

: 
X = (A - BK) (-1) (C + DK) 

 

 =A - [[0, 0], [0, 0]])^(-1) (C + [[1, 2], [3, 4]]) 
 

 =A) (-1) (C + D) 

 

= [[0.5,0],[0,1/3]],[[1,2],[3,4] 

 

= [[2.5,5],[9,4]] 

 

We can now use this updated value of X to update the 

values of K and repeat the process until the solution 

converges.This is just a simple example to show the 

basic idea of how to solve matrix equations using the 

MFD equation. In practice, the process can be more 

complex and multiple iterations may be required to 

achieve an optimal solution . 

 

 

2.7.2 Matrix Representation of Continued Fraction 

and its Use in Parallel Computation Algorithms 

Deduce the matrix representation equation for the 

continuous fraction and use it in parallel arithmetic 

algorithms. The matrix representation of a continuous 

fraction can be represented using the RATIONMATRIX 

formula, which is a 2x2 matrix. The equation for 

RATIONMATRIX is given by: 

 

RATIONMATRIX (a, b, c, d) = | a b | | c d | 

 

This matrix can be used in parallel arithmetic algorithms 

for fast computation of continued fractions. For 

example, the matrix representation can be used to 

estimate the value of a continued fraction in parallel, 

which can reduce the computational time compared to 

traditional sequential algorithms. In parallel arithmetic 

algorithms, the matrix representation of a continued 

fraction is multiplied with a vector of intermediate 

values to compute the final result in parallel. The 

intermediate values are then combined to get the final 

result. This approach is more efficient than traditional 

sequential algorithms as the computation can be done in 

parallel, reducing the overall time taken for 

computation. 
 

Example for the matrix representation equation for the 

continuous fraction and use it in parallel arithmetic 

algorithms 

Consider the continued fraction representation of a 

number as follows: 
 

a0 + 1/(a1 + 1/(a2 + 1/(a3 + ... ))) 
 

The matrix representation of this continued fraction can 

be given as: 
 

 R0 = RATIONMATRIX(a0, 1, 0, 1) 

 R1 = RATIONMATRIX(a1, 1, 0, 1) 

 R2 = RATIONMATRIX(a2, 1, 0, 1) ... 
 

The final matrix representation of the continued fraction 

can be calculated as the product of these matrices: 

R = R0 * R1 * R2 * ... 

This final matrix R can be used in parallel arithmetic 

algorithms to subtract the value of the continued 

fraction. 
 

For example, a parallel algorithm can be implemented 

as follows: 

1. Initialize a vector v0 = [1, a0] 

2. Divide the intermediate matrices R0, R1, R2, . 

into equal parts and assign each part to a 

different processing unit. 

3. Each processing unit multiplies its assigned 

part of the intermediate matrices with the 

vector v0 to get intermediate vectors v1, v2, ... 

4. The intermediate vectors are combined to get 

the final result v = [x, y], everyplace x/y is the 

value of the continued fraction. 
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This parallel algorithm can significantly reduce the 

computational time compared to traditional sequential 

algorithms. 

Consider a continued fraction representation of the 

number as: 
 

a0 + 1/(a1 + 1/(a2 + 1/(a3 + 1/(a4)))) 

 = a0 + 1/(a1 + 1/(a2 + 1/(a3 + 1/a4)))  
 

The corresponding matrices for each term in the 

continued fraction can be given as: 
 

R0 = RATIONMATRIX(a0, 1, 0, 1) 

R1 = RATIONMATRIX(a1, 1, 0, 1) 

R2 = RATIONMATRIX(a2, 1, 0, 1) 

R3 = RATIONMATRIX(a3, 1, 0, 1) 

R4 = RATIONMATRIX(a4, 1, 0, 1) 
 

The intersection of these matrices yields the final matrix 

representation of something like the continuing fraction:  

R = R0 * R1 * R2 * R3 * R4 

Let's say we have 4 processing units. The intermediate 

matrices R0, R1, R2, R3, R4 can be divided into 4 parts 

and assigned to each processing unit as follows: 

Processing Unit 1: R0 * R1 * R2 

 Processing Unit 2: R3  

Processing Unit 3: R4 

The intermediate vectors can be calculated as: 

Processing Unit 1: v0 * (R0 * R1 * R2) = v0 * R0 * R1 * 

R2  

Processing Unit 2: v0 * R3  

Processing Unit 3: v0 * R4 

Finally, the intermediate vectors can be combined to get 

the final result v = [x, y], and x/y is the continued 

fraction's value. 

This example demonstrates how the matrix 

representation of a continued fraction can be used in 

parallel arithmetic algorithms for fast computation. 

3. Results 

A continuous fraction (CF) is a representation of a real 

number as an infinite sum of terms. A continuous 

fraction matrix is a matrix representation of a CF, where 

each element of the matrix is a fraction. 

To formulate the CF matrix, first we complete a form 

with the CF.: 

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . +
1
𝑎3

 

Where a0, a1, a2, a3, ... are integers. The CF matrix is 

then formed by writing each fraction as a 2x2 matrix, 

with the numerator being the first element and the 

denominator being the second element. 

Example: Consider the CF for the golden ratio (1 + 

√5)/2. 

 

The CF for the golden ratio is: 

1 + 1/(1 + 1/(1 + ...)) 

The CF matrix is then: 

| 1 1 | | 1 0 | 

This CF matrix can be used in different ways, such as: 

1. Matrix exponentiation: The nth term of the CF 
can be calculated by raising the CF matrix to 
the power of n. 

2. Fibonacci numbers: The nth Fibonacci number 
can be calculated using the CF matrix and the 
Fibonacci primary values [F (0)=0, F(1)=1]. 

3. Converging to the golden ratio: The CF matrix 
can be used to approximate the golden ratio by 
repeatedly multiplying it with an initial vector. 
The result will converge to the golden ratio. 

These are just a few examples of how the CF matrix can 

be used 

4. Discussion 

The use of continued fractions and their matrix 

representation allows for efficient computation of 

continued fraction expansions, which can be useful in a 

variety of applications. One important application is in 

the field of number theory, where continued fractions 

are used to find the best rational approximations of real 

numbers. This is important in many areas such as 

computer graphics, where approximating real numbers 

with rational numbers can improve the precision and 

accuracy of computations. Another application of 

continued fractions is in solving certain differential 

equations, however, in some circumstances, continuing 

fractions can be employed to achieve perfect answers. 
  

5. Conclusions 

Continued fractions have applications in cryptography, 

where they can be used for key generation and 

encryption/decryption .The use of matrix representation 

of continued fractions allows for efficient computation 

of continued fraction expansions using matrix 

multiplication, which can be easily parallelized in 

parallel computation algorithms.  

This can lead to significant speedup in the computation 

of continued fractions and can be useful in applications 

such as computer graphics, cryptography, and scientific 

computing. To conclude, the use of continued fractions 

and their matrix representation allows for efficient and 

precise computation of real numbers, the continued 

fraction matrix can have practical uses across diverse 

fields. 
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