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Abstract

In this paper, The existence and uniqueness of solution is studied in Ly[a,b]x Lz[c,d].
Moreover, we use a degenerate kernel method to transform the integral equation into a linear
algebraic system. In addition, the existence and uniqueness of this linear algebraic is

discussed. Finally, numerical examples are considered and the error, in each case is
computed by Maple.

Keywords: - Fredholm Integral Equation, The existence and uniqueness solution,
Degenerate kernel method.
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1. Introduction

Integral equations are undoubtedly extremely significant in both practical and scientific
domains. In reality, a variety of challenges and issues in disciplines including physics,
chemical engineering, heat and mass, etc. led to these equations. The most of integral
equations that are closely related to differential equations are known as Fredholm Integral
Equations (FIEs). Hence, boundary value issues for differential equations are the source of
(FIEs), which are then resolved using a variety of basic techniques. In the applied sciences,
the use of integral equations and their various forms and kernels is a crucial topic where are
used as mathematical models for many physical situations. When the kernel has either a
continuous or  discontinuous form, numerical methods play a significant role to solve
one- and two-dimensional integral equations. The most known techniques are projection-
iteration, collecation, Galerkin and degenerate kernel.

The degenerate kernel approach can be applied if the kernel is continuous and can be
expressed as the product of two functions. The approximation kernel approach, also known
as the iterated method, can be applied if the kernel can not be expressed as the product of
two functions. For more information for the numerical methods can be found in (Atkinson,
1997, Hacia, 1993, Golberg, 1979, Golberg, 1990 and Delves & Mohamed, 1985).

Many problem in applied science for example in engineering can be translated into two-
dimensional (2D-FIEs). Fallahzadeh in (Fallahzadeh, 2012) used the Gsussian radial basis
function and triangular method to solve (2D-FIES). Ziyaee and Tari (Ziyaee & Tari, 2015
and Abdelaziz, 2022) used the differential transform approach to solve the problem. Lin
(Lin, 2014) employed wavelet-based techniques to solve two-dimensional integral equations
numerically. The (2D-FIE) were numerically solved by Alipanah and Esmaeili (Alipanah &
Esmaeili, 2011) using the Gaussian radial basis function. A computational technique for
resolving (2D-FIEs) of the second kind was discovered by Tari and Shahmorad (Tari &
Shahmorad, 2008). Two-dimensional triangular orthogonal functions were used by Mirzaee
and Piroozfar (Mirzaee & Piroozfar, 2010) to numerically solve linear (2D-FIEs) of the
second kind. This study covers the analytic and numerical approach of using the degenerate
kernel method to solve the (2D-FIEs) (Abdou, 2000, Abdou & Mohamed & Ismail, 2002
and Abdou & Mohamed & Ismail, 2003). We will discuss the existence and uniqueness of
the solution where the theorem is proved by two different ways: Picard and Banach fixed
point

(Abdou & Hendi, 2005, Abdou & Elboraie & Elkojok, 2008 and chiavone & Costanda &
Mioduchowski, 2002). Moreover, the approximate kernel method is discussed. The
degenerate kernel method transform the integral equation into a linear algebraic system.
Finally, some example are given to show how fast and efficient the computations are.
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2. Fredholm Integral Equation (FIE) in two Dimensional

Fredholm integral equation in two dimensional take the form
bd
/1” K(x,u;y,v)@(u,v)dudv= f(x,y) (1)

Where p constant defines the kind of the integral equation, for 4=0

and p :constanti o e have respectively the (FIE) of the first and second kind, while y)
Is a constant has many physical meaning. The known functions K(x u:y v) and £(x,y)

represent respectively, the continuous kernel of the integral equation and its free term. While
go(x, y) represents the unknown function.

2.1 Existence and uniqueness solution

In order to prove the existence and unigqueness of solution of (1), we assume the following
conditions:

(i) The kernel K(x,u; y,V)’ in general, satisfies

2

bbdd
{“” KO u;y.v dxdudde} <C , Cisaconstant (very small)

(i) The given function £(x, y) and its partail derivatives with respect to are

X,y

continuous and its normality in L,[a,b]x L, [c,d] IS given by

O C— O

3
£ (x, y){zdxdy} =D |, Disaconstant.

b
1o {I

Theorem 1:- The solution of the two dimensional integral equation (1) is exist and unique,
under the following condition

< @

We shall prove the above theorem by using two different methods Picard method and
Banach fixed point theorem:
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Proof: - To prove that the solution of equation (1) is exist, using Picard

method, we pick up any real continuous function @,(X,y) in L,[a,b]xL,[c,d], then we
construct a sequence ¢, (X, y) to have

b d
1o, (x,y)= +/1” K(x,u;y,V)p, . (u,v)dudv , =0, n=12,... (3)

Where
1, (%, )= f(x,y) (4)

It is convenient to introduce

puy, (%, y)= ,u[(ﬁn (X Y)=da(x, y)}

/Iﬂ K (%,U; y,V)| ¢y (U,V) =4, (u,V) | dudv (5)

The above formula, yields

b d
(% y) = A[ [ K(xu; v,y (U, v)dud (6)
Also
uyo(xy)=f(xy) (7)

Also, the first and second term of equation (5) leads us construct series

=ZO‘, vi(x,y) ©)

Now, taking the norm of equation (6), we obtain

[kl y) =1 ©)

ﬁ K(x,u;y,v)w,_,(u,v)dudv

Using Cauchy — Schwarz inequality and condition (i) we have
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A
lya(x.y) us‘—ﬂ“cu Va0 y)| (10

Let n =1, in equation (10), then use condition (ii), we get

MCD
H%@WMM (11)

Also, using (10) at n =2, we get

)< el b
v, (x,y)| [\ﬂ\ (12)

By induction, one has

A

viy)l<aD . a=fe @)
This bound under condition 0<l makes the sequence v (x,y) uniformly convergent.
Hence, we have
o(x y)=2 v (xy) (14)

i=0

Since each of v; (X, y) Is continuous, hence o, (x,y) is also continuous, convergent and

X,y
represents the existence of the solution of (1).

To prove go(x, y) Is the unique solution of (1) assume é(x, y) Is another solution in
Lo[a,b]xL2[c,d] hence, we get

d(x,y)-d(xy)= K (%,u;y,v) [¢(u,v)—¢5(u,v)]dudv (15)

= |~
D C—— T
O O

Applying Cauchy-Schwarz inequality and using condition (i) we obtain

[ lx, y)-(x y)\\sg\cu oxy)-5(xy)] (1)
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But i‘ca. Hence o(X y)=o(xy)

‘ H

Therefore, 2%, y) represents a unique solution of equation (1)

Since Picard method fails to prove the existence and uniqueness of solution of (1) if

0 I.e. for the IE of the first kind. Also, if f(x, y)= 0 I.e for the homogeneous integral

equation. Therefore, we go to prove the existence of a unique solution of (1) using Banach
fixed point theorem. For this aim, write the integral equation (1) in the integral operator
form

f
Where
:ij‘j‘ K(x,u;y,v)p(u,v)dudv, (b)
ﬂaC

Hence, in view of the integral operator (a), (b), we can write equation (1) in the form

Wo=0¢p.

3. Degenerate kernel method to solve FIE in two dimensional

Suppose that the approximate kernel K m(x,u; y,v) takes the form

n

K, m(XU;y,v)= Zm: a,( c,(y)d;(v) (17)

i=1 j=1
where

‘Kn,m(xle;y,V)—K(X,U;y,VX—>0 ) as N,M—> oo (18)

Therefore, the integral equation (1) yields
bd
/J¢n,m (X’ y)_ ﬂ’J‘I Kn,m (X’ u, y’ V)(pn,m (U, V)dUdV = f (X1 y)+ Rn,m (19)

Where R,, IS the error function of o(n*flm*”)’ ; and . are constants.
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Definition 1:- The degenerate kernel method is said to be convergent of order ot in the
1 2

domain Llab]xL[c.d] if and only if for large S there exist a constant >0 independent

of , such that
nm

le(%,y) =@, m(x,y) | <y n7om™ (20)

Using (17) in (19), we have

w0643 (e, ) | b0, Wy v)duv=F(xy) (21

Assume the unknown constant

A. =

U]

b, (u)d;(v)e, ,(u,v)dudv (22)

D ey T
O C— O

Hence, the formula (21) becomes

o023 Aa (e )+ Y e0)

To determine A, (i=123..,nand j =123,..,m), by substituting (23) into (22), we have

Ay =[] b (u)dj(v){M+i $ Avalu)e, (v)}dudv

H M k=1

The previous formula can be adapted in the form

.j=;f +HZ DAy, + u#0, (24)
I, k=1
where
b d
f :H b, (u)d; (v)f (u,v)dudv, (25)
and

|]Ik

:D'—;U

i b, (u ¢, (v)dudv (26)

The formula (24) represents a system of linear algebraic equations of order Axm:
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To write the system in the vector form writes

AA

m'—.c

i b, (u)d; (v) @, (u,v) dudv 27)

Moreover, define the operator

b d

A):jj b,(u)d, (v) ;125 A, (u }dudv (28)
ac I k=1

Hence, we have the vector form

x-6(x). (29)

Where the elements of —and ( ) are given by

Ay A, . A _ B B
he | [ ld) ()

Al G =|. (30)
A, AL G, (A) .G, ()

Theorem 2:- Under the same assumptions of theorem 1, the sequence solution of equation
(19) converges uniformally to the unique solution ) of equation (1) in the space

L[ab]xLy[c.d]

Proof:- From equation (1) and equation (19), after neglecting the small error , , we have

o(x,y

bd
| o y)- 90 (x.¥)] \ 1T K000y, V)oluv)— Ky (6,05 .Y, 3] iy

The above formula can be a adopted in the form

6 (% ¥) =1 (

}T K (%,U;y,v) = K, o (x,U;y,v) |$(u,v) dudv

on (U5 YY) [4(u,v) =4, (u,v) ] dudy H L (31)
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as and the condition

Using the fact that [K (U3 y,v) = Ky (U y, V) >0 = nm — oo

Kn,m(x,u;y,vfdxdudydv} <C

i

we get
A
Jox )= un3)] < ol y)-oualy) =
By Banach fixed point theorem, we have
CD(X’ y) = ¢n,m(x’ y), as n,m-— o (32)

4. The existence and uniqueness solution of the linear algebraic system

The linear algebraic system of equation (24) or its equivalent linear vector (29), we define

Al ., {ZZ(A,)ZT (33)

i=1 j=1

Theorem 3:- Under the following conditions

[ambd 2 far ambd 2 %

[ {]bi (), (v) dudv] ma, dudv} =¢ , ¢ (is a small constant) (34)

o b d 1%

2 H(/)z(u,V, Aw,-)dUdV <n , (n isaconstant) (35)
%

n,m 2 n,m %
[ ﬁ‘(pu v, AIJ u v, Bij)‘ dudv] <&, Where gz‘,&_g‘{zmj_&j 2} (36)

ij=1

[N

Under the above conditions the linear algebraic system (24) or (29) has a unique solution in

the space L x|
2772

To prove this theorem, we must consider the following lemmas
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Lemma 1:- Under the conditions (34) and (35) the operator g of (29) is bounded.

Proof:- From equation (27) we have

G, ( XEI\ u)d; (v )I‘f(‘” 23 aa Uk,

H k=1

)| dudv (37)

Summing over i,j then applying Cauchy-Minkwoski inequality, we get

1] {8l

=1

b d 2 %
b, (u) dudv] {nm ”[ uv+ ZAkal c (v ]dudv] (38)

i,j=1 ;ulkl

Applying the condition of the above theorem, we have

|5(A)]<

A
—|C'¢ , u=0
/U‘ (39)

Hence, g Is bounded operator in Banach space |

2%l

Lemma 2:- Under the condition (36), g Is continuous in Banach space L x|
2772

Proof:- Let A and 5 be any two elements in ¢ -, therefore
B

hd n,m

‘Gij (ﬂ)— G, (ﬂ < j”bi [u) j (VX M t : 24 Uk, (A, - (@ t % 261' ke (vBy j dUdVSumming

2 e =

over i,j, and apply Cauchy-Minkwoski inequality, we get

{Z \Gij(x)_eu(gyr 43

ij=1

Gy Aals 2024 ¢ by cJg¥) 2aal) (Gl Alaall (Aol AT Lualal) daal)



Fredholm Integral Equations... Joud.Abdelaziz, Zienab.Elmaned

5. Numerical Examples

In this section, a numerical example is solved to show the efficiency of the method. The
program has been provided by the researcher in MAPLE.

Example 5.1- By using degenerate kernel method solve the integral equation:

1
o(x,y)- ZJ' [6xuy2v2 +9xuy®v? +10x%u’y?v? +15x2u3y3v4](p(u,v)dudv
Xy 0

O ey

p(x,y)=
—xy— x2y® — xy® — x2y? — xy?

Exact solution:
Solution
K(x,u; y,v)=6xuy?v? + 9xuy’v* +10x°u’y?v?® +15x%u®y3v*
= 3xu(2y2v2 +3y°v* )+ 5x2u3(2y2v2 + 3y3v4)

= (3xu +5x2u3)(2y2v2 +3y3v4)
2 2
K, u;y,v)=>(2i +1)x'u? > (j+1) y v?)
i=1 j=1
We can write the kernel in the form:

K<x,u;y,v>=iai<x>ci<u>b,-<y>d,-(v>

j=1

a,(x)=(2i+1)x', b(u)=u*" =12

Cj(Y):(j +1)y', dj(V):VZj’ j=12

We find

b,(u)d;(v)f(u,v)dudv

J

-
=
I
D ey T
O e O

Suchthat i=1,2,j=1,2

By using Maplel3 we get
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—47  -29 -19 -197
360 288 225 225

And also

Dij = b, (u)d;(v)a, (u)c, (v)dudv

D ey T
O e O

By using Maplel3 we get

S o N|o ~iv gl
Slo Blw owiw e
Nl wir Do e
Bl Rlo QG oo

By using Maplel3 we solved this linear system:

(1-AD)A=F
And we get
A:[ 111 i}
12 18 20 30
2,2
@°(x,y)=xy = Exact solution. p°(x,y)=f(xy)+ 2> A, a(x)c;(y)
i=1
j=1
Error=0

Example 5.2:- By using degenerate kernal method solve the integral equation:
11
(X, y)—” [12u y2v2 +150 y*4ve +16 xuy2v? +20 xuy*v® +20 X2 uly?v?
00
+25%%u°y*v? Jo(u,v)dudv=xy—x?y* —xy* —y* —x?y? —xy? —y?

Exact solution: ¢(x,y)=xy
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Solution:
K(x,u; y,v)=12uy?v® +15uy*v® +16xu’ y>v? + 20xu’y*v® + 20x°u’ y*v? + 25x°u’y *v*
= 3u(4y2v2 +5y4v3)+ 4xu2(4y2v2 +5y4v3)+ 5x2u3(4y2v2 +5y4v3)
= (3u +4xu® + 5x2u3)(4y2v2 + 5y2v3)
2

3
KU y,v)=> ([i+2)x > (j+3)y* vir
=1

i j=1

We can write the kernel in the form:

3,2

K(X’U; y’V):Zai (X)bi(u)cj(y)dj(\/)’

f..:ﬁ b(u)d;(v)f(uv)dudv , i=123,j=12

By using Maplel3 we get

= ~121 -359 -577 -257 —113 -1007]
| 240 1440 2800 1440 700 7200

And also

b(u)d;(v)a,(u)c (v)dudv , i=123,j=12,1=123, k=12

O C—y O

b

Maplel3 we get
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6 15 16 2 | 25]
5 14 15 21 28
, 5 8 5 5 2
16 9 6 6 32
4 5 4 5 4 5
s 7 s 7 5 7
2 5 2 5 2 5
s 8 3 8 3 8
3 15 16 4 2 25
s 8 25 7 3 4
1 15 8 1 5 25
2 = 15 2 o 48

By using Maplel3 we solved this linear system:

(1-AD)A=F, and we get

A fl 101 1 1 17
12 15 16 20 20 25

o (x,y)= f(x, y)+1322: Aya;(x)c;(y)

i=1
-1

(DD(X, y)= Xy = Exact solution.

Error =0

Example 5.3:- By using degenerate keral method, solve the integral equation.

o(x,y)— || xZsin(xu)y? cos(yv)p(u,v)dudv= f(x,y)

O e V| N
O NV | N

Such that

f(x, y)= Xy+%(—25in§x+ﬂxcos%xj(—2+2cos%x+ﬂysin%yj
Exact solution: ¢(x,y) = xy

K(x,u; y,v)=x?sin(xu).y? cos(yv)
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1 3 ol 2! 4l

© (_1)i*1X2i+1u2i71 © (_1)j71 2jyy2i-2
-2 (2i —1)! 2 >

= (2i-2)

a(x)=(-1)*x2 b,(u)=<2l:_l) =123
c,(y)=(-2)""y? | dJ(v):<2Vij__22)!, j=123

When n = 3, we have:

=3, SIS B

i-1 j=1 (2J - 2)!

since:
b, (U (u,v)dudv

weff

By using Maplel3 we get:

O e O

[ 0.8889749
0.6777050
0.1064433
0.1957566

F =| 01569944

0.0253158

0.0162703

0.0134099

| 00021914

Ijlk

m'qc'

} ¢, (u )b, (v)dudv
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By using Maplel3 solved the system.
(I-AD)A=F
And we get

1.686537]
1.053613
0.145706
0.419696

A=|0.262555

0.036343

0.037148

0.023252

0.003219)

°(x,y)= f(x,y>+zfzf A 3,9, (y).

-1 . 1 T T .
P(x,y)=xy+| —sin=x+=cos=x(nx) || —2+2cos= sin=
0*uy) =+ Jsing x foosT () | -2+ 20087 y +yrsinTy |

+1.68653x°y* —1.053613x°y* +0.1457069x°y® —0.419696x°y” +0.26255x°y*

—0.036343°y® +0.037148'y* —0.02325x" y* + 0.00321974 " y°®

Error =|p(x, y)-9°(x, y)

The following Tables showa the exact (analytical) solution ¢(x) of the FIE against the
numerical solution S,(x) for different values of x taken in the given interval [0, 1]. The error
can be determined as the absolute value of the difference between the exact solution and
numerical solution as shown in the fifth column of Table 1 for n=3 and Table 2 for n=10.
We note that by increasing the number of points to n, we obtain more accurate solution of
the (2D-FIE) as seen in the fifth column of Table 2.
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X y Exact solution Approximate solution Error
0 0 0
0 z 0.1007102490 0.1008874949 1.7724x10*
7
1 x
! 0.2014204981 0.2027781163 1.3576x10°3
T
i—z % 0.3021307471 0.3063925545 4.2618x1073
2z 7
- z
! 0.4028409961 0.4120079423 9.1669x1073
LA -
14 7
3z z 0.5035512451 0.5196751649 1.6123x10?
7 7
i i
2 7 0.6042614942 0.6303223960 2.6060x102
0.7049717432 0.7485795466 4.3607x1072

Table 1: The exact and numerical solutions of the FIE

When n = 10, we have

10

Ko (X, U;y,v) ="

i=1

(_ l)H x 2+ 2t

10

(2i —1)!

2

j=1

(_1)jfly2jvzj—2

(2j-2)
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X y Exact solution Approximate solution Error
0 z 0 0 0
7
12 i
! 0.1007102490 0.1007102483 7.0144x10°10
w T
7 7
3z z 0.2014204981 0.2014204925 5.6150%x10°
A 7
14
2 T
- z
7 7 0.3021307471 0.3021307301 1.7101x1078
T
52 7
14 . 0.4028409961 0.4028409597 3.6365x108
3z 7
7
% 0.5035512451 0.5035511852 5.9922x108
A
2
0.6042614942 0.6042614087 8.4800x1078
0.7049717432 0.7049716252 1.1836x1077

Table 2: The exact and numerical solutions of the FIE
6. Conclusion

In this paper we discussed the existence and uniqueness of the solution of the (2D-FIEs).
The degenerate kernel method were used to transform the integral equation into a linear
algebraic system. We measure the error of the computations as the absolute value of the
difference between the exact (analytical) solution ¢(x) and numerical solution. Hence, by
comparing the error of the numerical computations using Maple. One can conclude that from
the illustrated examples the method is efficient and the convergence is fast.
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