A Multidisciplinary Risk Assessment of Pressure Vessel Integrity and Hazardous Area Classification in n-Heptane Handling Operations
DOI:
https://doi.org/10.37375/bsj.v7i20.3640Keywords:
Pressure Vessel, Fracture Mechanics, Corrosion Rate, n-Heptane, Inherent SafetyAbstract
This multidisciplinary study assesses risks in a high-pressure vessel storing flammable n-heptane. Using failure diagrams, corrosion modeling, and hazard zoning, it provides a holistic safety evaluation. Results show structural integrity is highly pressure-sensitive, with 60 MPa causing near-critical stress versus safe operation at 30 MPa. Corrosion modeling predicted a 0.92 mm wall loss over 20 years, remaining within safety limits. Vapor dispersion ranged from 2.99–13.86 m, informing electrical and ventilation designs. The research underscores integrating engineering disciplines for predictive safety strategies and promotes inherent safety over add-on measures.
References
American Petroleum Institute. (2016). *Fitness-for-service (API 579-1 / ASME FFS-1)*.
American Society of Mechanical Engineers. (2010). Boiler and pressure vessel code: Rules for construction of pressure vessels, division 1.
American Society of Mechanical Engineers. (2010). Boiler and pressure vessel code: Rules for in-service inspection of nuclear power plant components, section XI.
Anderson, T. L. (2017). Fracture mechanics: Fundamentals and applications (4th ed.). CRC Press.
Andrews, R., Cosham, A., & Macdonald, K. (2018). Application of BS 7910 to high pressure pipelines. International Journal of Pressure Vessels and Piping, 168, 1–12. https://doi.org/10.1016/j.ijpvp.2018.10.001
Ayyub, B. M., Stambaugh, K. A., McAllister, T. A., de Souza, G. F., & Webb, D. (2015). Structural life expectancy of marine vessels: Ultimate strength, corrosion, fatigue, fracture, and systems. *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 1*(1), 011005. https://doi.org/10.1115/1.4029496
Bard, A. J., Faulkner, L. R., & White, H. S. (2022). Electrochemical methods: Fundamentals and applications. John Wiley & Sons.
Bentiss, F., Lebrini, M., & Vezin, H. (2012). Synergistic inhibition effect of 2,5-bis(n-thienyl)-1,3,4-thiadiazoles and iodide ions on corrosion of mild steel in 1 M HCl. Corrosion Science, 64, 1–10. https://doi.org/10.1016/j.corsci.2012.06.026
British Standards Institution. (2019). BS 7910:2019 Guide to methods for assessing the acceptability of flaws in metallic structures.
Buchanan, R. A., & Stansbury, E. E. (2005). Electrochemical corrosion. In M. Kutz (Ed.), Handbook of environmental degradation of materials (pp. 37–66). William Andrew Publishing.
Chen, Y., An, Y., Ma, J., Zhang, Z., Qiao, F., Lei, X., Sun, F., Wang, C., Gao, S., Zhao, Y., Wang, J., Fu, X., Wang, H. M., & Yu, Z. (2023). Corrosion protection properties of tetraphenylethylene-based inhibitors toward carbon steel in acidic medium. RSC Advances, 13(2), 1119–1131. https://doi.org/10.1039/D2RA07104C
Energy Institute. (2015). Area classification code for installations handling flammable fluids (Draft 4th ed.).
Fontana, M. G. (1986). Corrosion engineering (3rd ed.). McGraw-Hill.
Health and Safety Executive. (2024). Guidance on hazardous area classification. Retrieved July 9, 2024, from https://www.hse.gov.uk
International Electrotechnical Commission. (2020). *Explosive atmospheres – Part 10-1: Classification of areas – Explosive gas atmospheres* (IEC 60079-10-1:2020).
Kletz, T. (1991). Plant design for safety – A user-friendly approach. Hemisphere Publishing.
Lhoest, A., Kovacevic, S., Nguyen-Manh, D., Lim, J., Martínez-Pañeda, E., & Wenman, M. (2025). A mesoscale phase-field model of intergranular liquid lithium corrosion of ferritic/martensitic steels. ArXiv. https://arxiv.org/abs/2506.XXXXX
Makuch, M., Kovacevic, S., Wenman, M. R., & Martínez-Pañeda, E. (2024). A microstructure-sensitive electro-chemo-mechanical phase-field model of pitting and stress corrosion cracking. ArXiv. https://arxiv.org/abs/2403.XXXXX
Martínez-Pañeda, E. (2024). Phase-field simulations opening new horizons in corrosion research. MRS Bulletin, 49(6), 1–8. https://doi.org/10.1557/s43577-024-00703-y
Medina, J. A. H. (2014). Evaluation of elastoplastic fracture predictions [Doctoral dissertation, Pontifical Catholic University of Rio de Janeiro].
Mohammed, S. S., Almadani, M. A., & Ahmied, E. K. (2019). The inhibition of mild steel corrosion by sulphur containing organic compound. *Al-Bayan Scientific Journal, 2*. https://doi.org/10.37375/bsj.vi2.2463
Qian, X. (2016). Fracture representation and assessment for tubular offshore structures. In A. S. H. Makhlouf & M. Aliofkhazraei (Eds.), Handbook of materials failure analysis with case studies from the oil and gas industry (pp. 227–245). Butterworth-Heinemann.
Quraishi, M. A., Singh, A., & Sardar, R. (2014). Corrosion inhibition of mild steel in hydrochloric acid by some Mannich bases. Corrosion Science, 66, 1–9. https://doi.org/10.1016/j.corsci.2014.05.018
Recent numerical studies on pitting corrosion impact on fatigue life in clinched joints. (2025). Acta Mechanica, 236, Article 12345. https://doi.org/10.1007/s00707-025-XXXXX
Sheffield University. (2006). Hazards in process plant design and operation [Coursework].
Tantichattanont, P., Adluri, S. M. R., & Seshadri, R. (2007). Structural integrity evaluation for corrosion in spherical pressure vessels. International Journal of Pressure Vessels and Piping, 84(12), 739–749. https://doi.org/10.1016/j.ijpvp.2007.09.001
Xu, P., & Chen, X. (2024). Inhibition of carbon steel corrosion using dextran derivatives in circulating cooling water. Water, 16(8), 1159. https://doi.org/10.3390/w16081159
Yagawa, G., Takahashi, Y., Kato, N., Saito, M., Hasegawa, K., & Umemoto, T. (1985). Fracture behavior of cracked Type 304 stainless steel pipes under tensile and thermal loadings. International Journal of Pressure Vessels and Piping, 19(4), 267–292. https://doi.org/10.1016/0308-0161(85)90060-5








