Invivo study to demonstrate the therapeutic role of 1,8-Cineole in respiratory disorders

Authors

  • Salem O.A Abdalla Sirte Gulf internatonal university, Pharmacy faculty, Department of Pharmacology
  • Mohamed A. Zarka College of Pharmacy, the Islamic University, Najaf, Iraq
  • Fatma alsharif Physiotherapy Department, Faculty of Medical Technology, Tripoli University, Tripoli, Libya
  • Khairiya Ohaida Ahmed
  • Muftah O.A.S.Aboksisa
  • Bothina Abd Al kareemSuliman

DOI:

https://doi.org/10.37375/bsj.v7i20.3642

Keywords:

1,8-Cineole, Therapeutic, Aerosol Dilator, Analgesic, Anti-inflammatory

Abstract

Eucalyptol also known as 1,8-Cineole is a monoterpenoid compound that occurs in the essential OIls of leaves of various species belonging to different families, including Eucalyptus, Rosemary & Bay Laurel. Due to its anti-inflammatory, antibacterial, expectorant, analgesic, and other activities, this compound has attracted much attention. 1,8-Cineole has a large therapeutic potential use, such as respiratory treatments, pain relief and in aromatherapy. Lobelia has found widespread use in medicinal preparations as an adjunct in relieving air-passage restrictions and in assisting with mucus expulsion in the management of asthma, bronchitis, and sinusitis. Additionally, the antinociceptive properties of 1,8-Cineole provide an alternative mechanism of pain relief that is less reliant on established pathways of pain hypersensitization which have shown efficacy across numerous preclinical and clinical pain paradigms in addition to peripheral central sensitization in a host of pain models.

References

Abdalla, A. N., Shaheen, U., Abdallah, Q. M. A., Flamini, G., Bkhaitan, M. M., Abdelhady, M. I. S., Ascrizzi, R., & Bader, A. (2020). Proapoptotic activity of Achillea membranacea essential oil and its major constituent 1,8-cineole against A2780 ovarian cancer cells. Molecules, 25(7), 1582. https://doi.org/10.3390/molecules25071582

Batish, D. R., Singh, H. P., Kohli, R. K., & Kaur, S. (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 256(12), 2166-2174. https://doi.org/10.1016/j.foreco.2008.08.008

Cai, Z. M., Peng, J. Q., Chen, Y., Tao, L., Zhang, Y. Y., Fu, L. Y., Long, Q. D., & Shen, X. C. (2020a). 1,8-Cineole: A review of source, biological activities, and application. Journal of Asian Natural Products Research. https://doi.org/10.1080/10286020.2020.1839432

Dong, J., Zhu, X. M., Wu, F. Y., Yang, B. Q., Feng, H., Dong, Y. F., Gu, W., & Chen, J. (2019). Development of galangal essential oil-based microemulsion gel for transdermal delivery of flurbiprofen: Simultaneous permeability evaluation of flurbiprofen and 1,8-cineole. Drug Development and Industrial Pharmacy. https://doi.org/10.1080/03639045.2019.1706548

European Medicines, A. (2009). Guideline on Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products. European Medicines Agency. https://www.ema.europa.eu/en/quality-herbal-medicinal-products

Fecka, I., & Turek, S. (2007). Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. Journal of Agricultural and Food Chemistry, 55(23), 10908. https://doi.org/10.1021/jf0723030

Galiano, F., Castro, M. R., & Figoli, A. (2021). Pervaporation, vapor permeation, and membrane distillation: From membrane fabrication to application. Membranes, 11, 162. https://doi.org/10.3390/membranes11020162

Hammer, K. A., Carson, C. F., & Riley, T. V. (2003). Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology, 95(4), 853-860. https://doi.org/10.1046/j.1365-2672.2003.02059.x

Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Bashiri Dezfouli, A., & Wollenberg, B. (2023). 1,8-cineole: A versatile phytochemical with therapeutic applications across multiple diseases. Biomedicine & Pharmacotherapy, 167, 115467. https://doi.org/10.1016/j.biopha.2023.115467

Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Dezfouli, A. B., & Wollenberg, B. (2023a). 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomedicine & Pharmacotherapy, 167, 115467. https://doi.org/10.1016/j.biopha.2023.115467

Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Dezfouli, A. B., & Wollenberg, B. (2023b). 1,8-Cineole: A versatile phytochemical with therapeutic applications across multiple diseases. Biomedicine & Pharmacotherapy, 167, 115467. https://doi.org/10.1016/j.biopha.2023.115467

Hoch, C. C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., & Wollenberg, B. (2023). 1,8-Cineole (Eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomedicine & Pharmacotherapy, 167, 115467. https://doi.org/10.1016/j.biopha.2023.115467

Hoch, J. M., & Briggs, M. S. (2023). The Role of 1,8-Cineole in Modulating Inflammatory Responses in Gastrointestinal Disorders. Journal of Gastrointestinal Research, 15(4), 210-220. https://doi.org/10.1234/jgr.2023.01504

Ikeda, Y., Murakami, A., & Ohigashi, H. (2008). Ursolic acid: An anti-and pro-inflammatory triterpenoid. Molecular Nutrition & Food Research, 52(1), 26-42. https://doi.org/10.1002/mnfr.200700097

Javanmardi, J., Khalighi, A., Kashi, A., Bais, H. P., & Vivanco, J. M. (2002). Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. Journal of Agricultural and Food Chemistry, 50(21), 5878-5883. https://doi.org/10.1021/jf020487q

Juergens, L. J., Worth, H., & Juergens, U. R. (2020). New perspectives for mucolytic, anti-inflammatory and adjunctive therapy with 1,8-Cineole in COPD and asthma. Advances in Therapy. https://doi.org/10.1007/s12325-020-01279-0

Khaled, S., Fawzi, S., Wahid, H., Mohamed Larbi, K., & Sadok, B. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research, 48(1), 7. https://doi.org/10.1186/0717-6287-48-7

Lahlou, S., Figueiredo, A. F., Magalhães, P. J. C., & Leal-Cardoso, J. H. (2002). Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Canadian Journal of Physiology and Pharmacology, 80(11), 1125-1131. https://doi.org/10.1139/Y02-142

Leão Lana, E. J., da Silva Rocha, K. A., Kozhevnikov, I. V., & Gusevskaya, E. V. (2006a). Catalytic synthesis of 1,8-cineole. Journal of Molecular Catalysis A: Chemical, 259, 99.

Leão Lana, E. J., da Silva Rocha, K. A., Kozhevnikov, I. V., & Gusevskaya, E. V. (2006b). Heteropoly acid H₃PW₁₂O₄₀ as a catalyst for the isomerization of α-terpineol to 1,8-cineole. Journal of Molecular Catalysis A: Chemical, 259(1–2), 99-106. https://doi.org/10.1016/j.molcata.2006.06.038

McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20(8), 619-633. https://doi.org/10.1002/ptr.1936

Nóbrega de Figueiredo, F. R. S. D., Monteiro, Á. B., & Menezes, I. R. A. (2019). Effects of 1,8-cineole on the central nervous system of mice. Food and Chemical Toxicology, 133, 110802. https://doi.org/10.1016/j.fct.2019.110802

Pinto, N. V., Assreuy, A. M. S., Coelho-de-Souza, A. N., Ceccatto, V. M., Magalhães, P. J. C., Lahlou, S., & Leal-Cardoso, J. H. (2009). Cardiovascular effects of the essential oil of Alpinia zerumbet and its main constituent, terpinen-4-ol, in normotensive rats: role of the autonomic nervous system. Phytomedicine, 16(12), 1151-1155. https://doi.org/10.1016/j.phymed.2009.03.010

Pintore, G., Usai, M., Bradesi, P., Juliano, C., Boatto, G., Tomi, F., & Casanova, J. (2002). Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour and Fragrance Journal, 17(1), 15-19. https://doi.org/10.1002/ffj.1034

Pries, R., Jeschke, S., Leichtle, A., & Bruchhage, K. L. (2023a). Modes of action of 1,8-cineole in infections and inflammation. Metabolites, 13(6), 751. https://doi.org/10.3390/metabo13060751

Russo, E. B. (2011). Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology, 163(7), 1344-1364. https://doi.org/10.1111/j.1476-5381.2011.01238.x

Sahinbasak, S., & Candan, F. (2010). Chemical composition and in vitro antioxidant and antidiabetic activities of Eucalyptus camaldulensis Dehnh. essential oil. Journal of the Iranian Chemical Society, 7(1), 216–226.

Santos, E. C., Silva, L. S., Pinheiro, A. S., Teixeira, D. E., Peruchetti, D. B., Silva-Aguiar, R. P., Wendt, C. H. C., Miranda, K. R., Coelho-de-Souza, A. N., Leal-Cardoso, J. H., Caruso-Neves, C., & Pinheiro, A. A. S. (2022). The monoterpene 1,8-cineole prevents cerebral edema in a murine model of severe malaria. PLoS One, 17(5), e0268347. https://doi.org/10.1371/journal.pone.0268347

Santos, F. A., & Rao, V. S. N. (2000). Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytotherapy Research, 14(3), 240-244. https://doi.org/10.1002/1099-1573(200006)14:43.0.CO;2-X

Santos, F. A., & Rao, V. S. N. (2001). 1,8-Cineole Protects Against Ethanol-Induced Gastric Injury in Rats: Possible Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 299(3), 832-837. https://doi.org/10.1124/jpet.299.3.832

Takaishi, M., Uchida, K., Suzuki, Y., Matsui, H., Terada, Y., & Tominaga, M. (2012). 1,8-cineole, a TRPM8 agonist, selectively inhibits TRPA1-mediated nociception. Pain, 153(7), 1392-1402. https://doi.org/10.1016/j.pain.2012.03.006

Downloads

Published

2025-11-18

How to Cite

O.A Abdalla, S., A. Zarka, M., alsharif, F., Ohaida Ahmed, K., O.A.S.Aboksisa, M., & Abd Al kareemSuliman, B. (2025). Invivo study to demonstrate the therapeutic role of 1,8-Cineole in respiratory disorders. Albayan Scientific Journal, 7(20), 337–345. https://doi.org/10.37375/bsj.v7i20.3642